[矩阵乘法] PKU3233 Matrix Power Series

[ 矩 阵 乘 法 ] M a t r i x P o w e r S e r i e s [矩阵乘法]Matrix Power Series []MatrixPowerSeries

Description

Given a n × n n × n n×n matrix A A A and a positive integer k k k, find the sum S = A + A 2 + A 3 + . . . + A k S = A + A^2 + A^3 + ... + A^k S=A+A2+A3+...+Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n n n ( n n n 30 30 30), k k k ( k k k 1 0 9 10^9 109) and m m m ( m m m < 1 0 4 10^4 104). Then follow n lines each containing n n n nonnegative integers below 32 , 768 32,768 32,768, giving A A A’s elements in row-major order.

Output

Output the elements of S S S modulo m in the same way as A A A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3


题目解析

为了降低时间复杂度,考虑矩阵乘法

然后可以构造出一个 2 r 2r 2r阶的矩阵 T T T
∣ A E O E ∣ \begin{vmatrix} A & E \\ O & E \\ \end{vmatrix} AOEE

其中:
A A A为输入的矩阵( A A A r r r阶的矩阵)
O O O为全零矩阵 ( O O O是值全为 0 0 0 r r r阶矩阵)
E E E为对角线矩阵( E E E是除了对角线为 1 1 1,其他的都为 0 0 0的矩阵)

然后可以得出: ∣ S [ n − 1 ] , A n ∣ = ∣ S [ n − 2 ] , A n − 1 ∣ ∗ T |S[n-1],A^n| = |S[n-2],A^{n-1}| * T S[n1],An=S[n2],An1T

然后通过将矩阵乘法的结合律通过快速幂来计算出 T n T^n Tn再可 A ∗ T n A*T^n ATn来求得答案


关于 T T T矩阵的实现

//全零矩阵的实现
//matrix 是已经定义的结构体,n和m是表示矩阵的长和宽,t是矩阵的值
matrix O (int re)
{
	matrix c;
	c.n = c.m = re;
	for (int i = 1; i <= re; ++ i)
	 for (int j = 1; j <= re; ++ j)
	  c.t[i][j] = 0;
	return c;
}
//对角线矩阵的实现
//matrix 是已经定义的结构体,n和m是表示矩阵的长和宽,t是矩阵的值,O函数为前文定义的全零矩阵
matrix E (int re)
{
	matrix c;
	c.n = c.m = re;
	c = O (re);
	for (int i = 1; i <= re; ++ i)
	 c.t[i][i] = 1;
	return a;	
}
//关于矩阵的合并。n,m,t,O(),E()前文已述,T1就是前文提到的T矩阵,re为前文提到的r,a是前文提到的A
matrix hb (int re)
{
	t1.n = t1.m = re * 2;
	for (int i = 1; i <= re; ++ i)
	 for (int j = 1; j <= re; ++ j)
	  t1.t[i][j] = a.t[i][j];
	matrix er = E (re);
	for (int i = 1; i <= re; ++ i)
	 for (int j = re + 1; j <= re * 2; ++ j)
	  t1.t[i][j] = er.t[i][j];
	for (int i = re + 1; i <= re * 2; ++ i)
	 for (int j = re + 1; j <= re * 2; ++ j)
	  t1.t[i][j] = er.t[i][j];
	for (int i = re + 1; i <= re * 2; ++ i)
	 for (int j = 1; j <= re; ++ j)
	  t1.t[i][j] = 0;
}
posted @ 2020-12-18 21:33  unknown_future  阅读(53)  评论(0编辑  收藏  举报