Java并发编程核心方法与框架-Semaphore的使用
Semaphore中文含义是信号、信号系统,这个类的主要作用就是限制线程并发数量。如果不限制线程并发数量,CPU资源很快就会被耗尽,每个线程执行的任务会相当缓慢,因为CPU要把时间片分配给不同的线程对象,而且上下文切换也要耗时,最终造成系统运行效率大幅降低,所以限制并发线程的数量是很有必要的。
类Semaphore的同步性
类Semaphore的构造方法参数permits表示同一时间内,最多允许多少个线程同时执行acquire()和release()之间的代码。
public class Service {
private Semaphore semaphore = new Semaphore(1);
public void testMethod() {
try {
System.out.println(Thread.currentThread().getName() + "进入testMethod方法 time:" + System.currentTimeMillis());
semaphore.acquire();
System.out.println(Thread.currentThread().getName() + " begin time:" + System.currentTimeMillis());
Thread.sleep(2000);
System.out.println(Thread.currentThread().getName() + " end time:" + System.currentTimeMillis());
semaphore.release();
} catch (Exception e) {
e.printStackTrace();
}
}
}
public class ThreadA extends Thread {
private Service service;
public ThreadA(Service service) {
super();
this.service = service;
}
@Override
public void run() {
service.testMethod();
}
}
public class ThreadB extends Thread {
private Service service;
public ThreadB(Service service) {
super();
this.service = service;
}
@Override
public void run() {
service.testMethod();
}
}
public class ThreadC extends Thread {
private Service service;
public ThreadC(Service service) {
super();
this.service = service;
}
@Override
public void run() {
service.testMethod();
}
}
public class Main {
public static void main(String[] args) {
Service service = new Service();
ThreadA a = new ThreadA(service);
a.setName("A");
ThreadB b = new ThreadB(service);
b.setName("B");
ThreadC c = new ThreadC(service);
c.setName("C");
a.start();
b.start();
c.start();
}
}
运行程序,控制台打印结果如下:
A进入testMethod方法 time:1468497756729
C进入testMethod方法 time:1468497756729
B进入testMethod方法 time:1468497756729
A begin time:1468497756729
A end time:1468497758733
C begin time:1468497758733
C end time:1468497760738
B begin time:1468497760738
B end time:1468497762742
从打印结果来看,A、B、C三个线程同时进入testMethod方法,三个线程排队执行acquire()和release()之间的代码。修改Semaphore的构造方法参数:
public class Service {
private Semaphore semaphore = new Semaphore(2);
public void testMethod() {
try {
System.out.println(Thread.currentThread().getName() + "进入testMethod方法 time:" + System.currentTimeMillis());
semaphore.acquire();
System.out.println(Thread.currentThread().getName() + " begin time:" + System.currentTimeMillis());
Thread.sleep(2000);
System.out.println(Thread.currentThread().getName() + " end time:" + System.currentTimeMillis());
semaphore.release();
} catch (Exception e) {
e.printStackTrace();
}
}
}
重新运行程序,控制台打印结果如下:
B进入testMethod方法 time:1468497974695
C进入testMethod方法 time:1468497974695
A进入testMethod方法 time:1468497974695
C begin time:1468497974695
B begin time:1468497974695
B end time:1468497976699
C end time:1468497976699
A begin time:1468497976699
A end time:1468497978703
可见,此A、B、C三个线程同时进入testMethod方法,时B、C线程同时开始执行acquire()和release()之间的代码。B、C线程执行完后,A线程开始执行acquire()和release()之间的代码。
方法acquire(int permits)参数作用及动态添加permits许可数量
有参方法acquire(int permits)的功能是每调用1次此方法,就使用permits个许可。
修改以上Service类:
//Semaphore的构造方法参数permits表示同一时间内
//最多允许多少个线程同时执行acquire()和release()之前的代码
public class Service {
private Semaphore semaphore = new Semaphore(10);//一共有10个许可
public void testMethod() {
try {
System.out.println(Thread.currentThread().getName() + "进入testMethod方法 time:" + System.currentTimeMillis());
semaphore.acquire(2);//每次执行消耗掉2个许可
System.out.println(Thread.currentThread().getName() + " begin time:" + System.currentTimeMillis());
Thread.sleep(2000);
System.out.println(Thread.currentThread().getName() + " end time:" + System.currentTimeMillis());
semaphore.release(2);
} catch (Exception e) {
e.printStackTrace();
}
}
}
public class Main {
public static void main(String[] args) {
Service service = new Service();
ThreadA[] a = new ThreadA[10];//ThreadA类同上面的ThreadA类
for (int i = 0; i < a.length; i++) {
a[i] = new ThreadA(service);
a[i].start();
}
}
}
程序运行结果如下:
Thread-0进入testMethod方法 time:1468587142883
Thread-3进入testMethod方法 time:1468587142883
Thread-2进入testMethod方法 time:1468587142883
Thread-1进入testMethod方法 time:1468587142883
Thread-5进入testMethod方法 time:1468587142883
Thread-2 begin time:1468587142883
Thread-3 begin time:1468587142883
Thread-4进入testMethod方法 time:1468587142883
Thread-0 begin time:1468587142883
Thread-8进入testMethod方法 time:1468587142883
Thread-7进入testMethod方法 time:1468587142883
Thread-6进入testMethod方法 time:1468587142883
Thread-5 begin time:1468587142883
Thread-1 begin time:1468587142883
Thread-9进入testMethod方法 time:1468587142884
Thread-0 end time:1468587144888
Thread-3 end time:1468587144888
Thread-2 end time:1468587144888
Thread-5 end time:1468587144888
Thread-1 end time:1468587144888
Thread-6 begin time:1468587144889
Thread-7 begin time:1468587144889
Thread-8 begin time:1468587144889
Thread-4 begin time:1468587144889
Thread-9 begin time:1468587144889
Thread-7 end time:1468587146892
Thread-4 end time:1468587146892
Thread-8 end time:1468587146892
Thread-6 end time:1468587146892
Thread-9 end time:1468587146892
由程序运行结果可见,10个线程同时进入testMethod()方法。由于一共有10个许可,每个线程acquire()时消耗2个许可,所以第一批有5个线程可以同时执行acquire()方法和release()方法之间的代码。第一批的5个线程执行完毕之后,每个线程释放掉2个许可,一共释放掉10个许可。剩下的5个线程一共获取10个许可同时开始执行。
方法acquireUninterruptibly()的使用
方法acquireUninterruptibly()的作用是使等待进入acquire()方法的线程不允许被中断。
先看一段能中断的代码
public class Service {
private Semaphore semaphore = new Semaphore(1);
public void testMethod() {
try {
semaphore.acquire();
System.out.println(Thread.currentThread().getName() + " begin time=" + System.currentTimeMillis());
for (int i = 0; i < Integer.MAX_VALUE/50; i++) {
String newString = new String();
Math.random();
}
System.out.println(Thread.currentThread().getName() + " end time=" + System.currentTimeMillis());
semaphore.release();
} catch (Exception e) {
System.out.println(Thread.currentThread().getName() + " 进入了catch");
e.printStackTrace();
}
}
}
//省略ThreadA和ThreadB的代码
public class Main {
public static void main(String[] args) throws InterruptedException {
Service service = new Service();
ThreadA a = new ThreadA(service);
a.setName("A");
a.start();
ThreadB b = new ThreadB(service);
b.setName("B");
b.start();
Thread.sleep(1000);
b.interrupt();
System.out.println("main中断了a");
}
}
程序运行结果如下:
A begin time=1468592693921
main中断了a
java.lang.InterruptedException
B 进入了catch
at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer.java:996)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.java:1303)
at java.util.concurrent.Semaphore.acquire(Semaphore.java:317)
at com.concurrent.chapter1.concurrent02.Service.testMethod(Service.java:9)
at com.concurrent.chapter1.concurrent02.ThreadB.run(ThreadB.java:11)
A end time=1468592695193
线程B成功被中断。对以上代码做如下修改:
public class Service {
private Semaphore semaphore = new Semaphore(1);
public void testMethod() {
try {
semaphore.acquireUninterruptibly();//不允许被中断
System.out.println(Thread.currentThread().getName() + " begin time=" + System.currentTimeMillis());
for (int i = 0; i < Integer.MAX_VALUE/50; i++) {
String newString = new String();
Math.random();
}
System.out.println(Thread.currentThread().getName() + " end time=" + System.currentTimeMillis());
semaphore.release();
} catch (Exception e) {
System.out.println(Thread.currentThread().getName() + " 进入了catch");
e.printStackTrace();
}
}
}
重新运行程序,控制台的打印结果如下:
A begin time=1468592930516
main中断了a
A end time=1468592931792
B begin time=1468592931792
B end time=1468592932998
acquireUninterruptibly()方法还有重载的写法acquireUninterruptibly(int permits),作用是在等待许可的情况下不允许中断,如果成功获得锁,则取得指定permits个许可。
方法availablePermits()和drainPermits()
availablePermits()返回此Semaphore对象中当前可用的许可数。
public class Service {
private Semaphore semaphore = new Semaphore(10);//一共有10个许可
public void testMethod() {
try {
semaphore.acquire(2);//每次执行消耗掉2个许可
System.out.println(semaphore.getQueueLength() + "个线程正在等待");
System.out.println("是否有线程正在等待semaphore:" + semaphore.hasQueuedThreads());
System.out.println("可用许可个数" + semaphore.availablePermits());
Thread.sleep(2000);
semaphore.release(2);
System.out.println("可用许可个数" + semaphore.availablePermits());
} catch (Exception e) {
e.printStackTrace();
}
}
}
//省略ThreadA类代码
public class Main {
public static void main(String[] args) throws InterruptedException {
Service service = new Service();
ThreadA[] a = new ThreadA[10];
for (int i = 0; i < a.length; i++) {
a[i] = new ThreadA(service);
a[i].start();
Thread.sleep(100);
}
}
}
运行程序,控制台打印结果如下:
0个线程正在等待
是否有线程正在等待semaphore:false
可用许可个数8
0个线程正在等待
是否有线程正在等待semaphore:false
可用许可个数6
0个线程正在等待
是否有线程正在等待semaphore:false
可用许可个数4
0个线程正在等待
是否有线程正在等待semaphore:false
可用许可个数2
0个线程正在等待
是否有线程正在等待semaphore:false
可用许可个数0
可用许可个数2
4个线程正在等待
是否有线程正在等待semaphore:true
可用许可个数0
可用许可个数0
3个线程正在等待
是否有线程正在等待semaphore:true
可用许可个数0
可用许可个数2
2个线程正在等待
是否有线程正在等待semaphore:true
可用许可个数0
可用许可个数2
1个线程正在等待
是否有线程正在等待semaphore:true
可用许可个数0
可用许可个数2
0个线程正在等待
是否有线程正在等待semaphore:false
可用许可个数0
可用许可个数2
可用许可个数4
可用许可个数6
可用许可个数8
可用许可个数10
availablePermits()通常用于调试,因为许可的数量有可能实时在改变。
drainPermits()可以获取并返回立即可用的许可数,并且将许可置为0.
getQueueLength()获取等待许可的线程的个数。
hasQueuedThreads()判断是否有线程在等待这个许可。
公平与非公平信号量的测试
公平信号量是获得锁的顺序与线程启动顺序有关,但不代表100%得获得信号量,仅仅是在概率上能得到保证。非公平信号量就是获得锁的顺序与线程启动顺序无关。
public class Service {
private boolean isFair = false;
private Semaphore semaphore = new Semaphore(1, isFair);
public void testMethod() {
try {
semaphore.acquire();
System.out.println(Thread.currentThread().getName());
} catch (Exception e) {
e.printStackTrace();
} finally {
semaphore.release();
}
}
}
public class MyThread extends Thread {
private Service service;
public MyThread(Service service) {
super();
this.service = service;
}
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + "启动了");
service.testMethod();
}
}
public class Main {
public static void main(String[] args) {
Service service = new Service();
MyThread thread = new MyThread(service);
thread.start();
MyThread[] threads = new MyThread[4];
for (int i = 0; i < threads.length; i++) {
threads[i] = new MyThread(service);
threads[i].start();
}
}
}
运行程序,控制台打印结果如下:
Thread-0启动了
Thread-3启动了
Thread-2启动了
Thread-1启动了
Thread-4启动了
Thread-0
Thread-3
Thread-2
Thread-1
Thread-4
此时的信号量为非公平信号量,线程的启动顺序与其调用semaphore.acquire()无关。先启动的线程不一定先获得许可。
对以上程序做如下修改:
public class Service {
private boolean isFair = true;//公平锁
private Semaphore semaphore = new Semaphore(1, isFair);
public void testMethod() {
try {
semaphore.acquire()
System.out.println(Thread.currentThread().getName());
} catch (Exception e) {
e.printStackTrace();
} finally {
semaphore.release();
}
}
}
重新运行程序,控制台打印结果如下:
Thread-0启动了
Thread-3启动了
Thread-2启动了
Thread-1启动了
Thread-0
Thread-4启动了
Thread-3
Thread-2
Thread-1
Thread-4
此时线程启动的顺序与线程执行semaphore.acquire()的顺序一致。先启动的线程先获得许可(非100%)。
方法tryAcquire()的使用
无参方法tryAcquire()的作用是尝试获得1一个许可,如果获取不到则返回false,此方法通常与if语句结合使用,具有无阻塞的特点。
public class Service {
private Semaphore semaphore = new Semaphore(1);
public void testMethod() {
if (semaphore.tryAcquire()) {
System.out.println(Thread.currentThread().getName() + "首选进入");
for (int i = 0; i < Integer.MAX_VALUE; i++) {
String newString = new String();
Math.random();
}
semaphore.release();
} else {
System.out.println(Thread.currentThread().getName() + "未成功进入");
}
}
}
//省略ThreadA、ThreadB代码
public class Main {
public static void main(String[] args) throws InterruptedException {
Service service = new Service();
ThreadA a = new ThreadA(service);
a.setName("A");
ThreadB b = new ThreadB(service);
b.setName("B");
a.start();
b.start();
}
}
程序运行结果如下:
A首选进入
B未成功进入
方法tryAcquire(long timeout, TimeUnit unit)的使用
有参方法tryAcquire(long timeout, TimeUnit unit)的作用是在指定的时间内尝试获得1个许可,如果获取不到就返回false。
public class Service {
private Semaphore semaphore = new Semaphore(1);
public void testMethod() {
try {
if (semaphore.tryAcquire(3, TimeUnit.SECONDS)) {
System.out.println(Thread.currentThread().getName() + "首选进入");
for (int i = 0; i < Integer.MAX_VALUE; i++) {
String newString = new String();
Math.random();
}
semaphore.release();
} else {
System.out.println(Thread.currentThread().getName() + "未成功进入");
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
//省略ThreadA、ThreadB
//省略面函数
运行程序,控制台打印结果如下:
A首选进入
B未成功进入
对以上代码做如下修改:
public class Service {
private Semaphore semaphore = new Semaphore(1);
public void testMethod() {
try {
if (semaphore.tryAcquire(3, TimeUnit.SECONDS)) {
System.out.println(Thread.currentThread().getName() + "首选进入");
for (int i = 0; i < Integer.MAX_VALUE; i++) {
//String newString = new String();
//Math.random();
}
semaphore.release();
} else {
System.out.println(Thread.currentThread().getName() + "未成功进入");
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
重新运行程序,控制台打印结果如下:
A首选进入
B首选进入
方法tryAcquire(int permits, long timeout, TimeUnit unit)的使用
有参方法tryAcquire(int permits, long timeout, TimeUnit unit)的作用是在指定的时间内尝试去的permits个许可,如果获取不到则返回false。
public class Service {
private Semaphore semaphore = new Semaphore(3);
public void testMethod() {
try {
if (semaphore.tryAcquire(3, 3, TimeUnit.SECONDS)) {
System.out.println(Thread.currentThread().getName() + "首选进入");
for (int i = 0; i < Integer.MAX_VALUE; i++) {
String newString = new String();
Math.random();
}
semaphore.release(3);
} else {
System.out.println(Thread.currentThread().getName() + "未成功进入");
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
//省略ThreadA、ThreadB
//省略面函数
运行程序,控制台打印结果如下:
A首选进入
B未成功进入
注释掉for循环中的两行代码,A、B就都可以获得许可。
多进路-多处理-多出路实验
public class Service {
private Semaphore semaphore = new Semaphore(3);
public void sayHello() {
try {
semaphore.acquire();
System.out.println(Thread.currentThread().getName() + "准备:" + System.currentTimeMillis());
for (int i = 0; i < 5; i++) {
System.out.println(Thread.currentThread().getName() + "打印:" + i);
}
System.out.println(Thread.currentThread().getName() + "结束:" + System.currentTimeMillis());
semaphore.release();
} catch (Exception e) {
e.printStackTrace();
}
}
}
//省略MyThread代码
public class Main {
public static void main(String[] args) {
Service service = new Service();
MyThread[] threads = new MyThread[10];
for (int i = 0; i < threads.length; i++) {
threads[i] = new MyThread(service);
threads[i].start();
}
}
}
运行程序,控制台打印结果如下:
Thread-0准备:1469151758503
Thread-2准备:1469151758503
Thread-1准备:1469151758503
Thread-2打印:0
Thread-2打印:1
Thread-0打印:0
Thread-2打印:2
Thread-1打印:0
Thread-2打印:3
Thread-0打印:1
Thread-2打印:4
Thread-1打印:1
Thread-1打印:2
Thread-2结束:1469151758504
Thread-0打印:2
Thread-3准备:1469151758504
Thread-1打印:3
Thread-3打印:0
Thread-0打印:3
Thread-0打印:4
Thread-3打印:1
Thread-1打印:4
Thread-3打印:2
Thread-0结束:1469151758505
Thread-3打印:3
Thread-4准备:1469151758505
Thread-1结束:1469151758505
Thread-4打印:0
Thread-4打印:1
Thread-3打印:4
Thread-4打印:2
Thread-5准备:1469151758505
Thread-4打印:3
Thread-3结束:1469151758505
Thread-4打印:4
Thread-5打印:0
Thread-4结束:1469151758505
Thread-6准备:1469151758505
Thread-7准备:1469151758505
Thread-6打印:0
Thread-5打印:1
Thread-5打印:2
Thread-6打印:1
Thread-7打印:0
Thread-6打印:2
Thread-5打印:3
Thread-6打印:3
Thread-7打印:1
Thread-6打印:4
Thread-5打印:4
Thread-6结束:1469151758506
Thread-7打印:2
Thread-8准备:1469151758506
Thread-5结束:1469151758506
Thread-8打印:0
Thread-9准备:1469151758506
Thread-7打印:3
Thread-9打印:0
Thread-8打印:1
Thread-8打印:2
Thread-9打印:1
Thread-7打印:4
Thread-9打印:2
Thread-9打印:3
Thread-9打印:4
Thread-8打印:3
Thread-8打印:4
Thread-9结束:1469151758507
Thread-7结束:1469151758506
Thread-8结束:1469151758507
可见,在某一时刻最多有三个线程同时在执行。
多进路-单处理-多出路实验
对以上代码做如下修改:
public class Service {
private Semaphore semaphore = new Semaphore(3);
private ReentrantLock lock = new ReentrantLock();
public void sayHello() {
try {
semaphore.acquire();
System.out.println(Thread.currentThread().getName() + "准备:" + System.currentTimeMillis());
lock.lock();//加锁
for (int i = 0; i < 5; i++) {
System.out.println(Thread.currentThread().getName() + "打印:" + i);
}
System.out.println(Thread.currentThread().getName() + "结束:" + System.currentTimeMillis());
lock.unlock();
semaphore.release();
} catch (Exception e) {
e.printStackTrace();
}
}
}
运行程序,控制台打印结果如下:
Thread-1准备:1469151895747
Thread-0准备:1469151895747
Thread-2准备:1469151895747
Thread-1打印:0
Thread-1打印:1
Thread-1打印:2
Thread-1打印:3
Thread-1打印:4
Thread-1结束:1469151895748
Thread-0打印:0
Thread-3准备:1469151895748
Thread-0打印:1
Thread-0打印:2
Thread-0打印:3
Thread-0打印:4
Thread-0结束:1469151895748
Thread-2打印:0
Thread-4准备:1469151895748
Thread-2打印:1
Thread-2打印:2
Thread-2打印:3
Thread-2打印:4
Thread-2结束:1469151895748
Thread-3打印:0
Thread-5准备:1469151895748
Thread-3打印:1
Thread-3打印:2
Thread-3打印:3
Thread-3打印:4
Thread-3结束:1469151895748
Thread-6准备:1469151895748
Thread-4打印:0
Thread-4打印:1
Thread-4打印:2
Thread-4打印:3
Thread-4打印:4
Thread-4结束:1469151895749
Thread-5打印:0
Thread-7准备:1469151895749
Thread-5打印:1
Thread-5打印:2
Thread-5打印:3
Thread-5打印:4
Thread-5结束:1469151895749
Thread-6打印:0
Thread-8准备:1469151895749
Thread-6打印:1
Thread-6打印:2
Thread-6打印:3
Thread-6打印:4
Thread-6结束:1469151895749
Thread-7打印:0
Thread-9准备:1469151895749
Thread-7打印:1
Thread-7打印:2
Thread-7打印:3
Thread-7打印:4
Thread-7结束:1469151895749
Thread-8打印:0
Thread-8打印:1
Thread-8打印:2
Thread-8打印:3
Thread-8打印:4
Thread-8结束:1469151895750
Thread-9打印:0
Thread-9打印:1
Thread-9打印:2
Thread-9打印:3
Thread-9打印:4
Thread-9结束:1469151895750
此时,某一时刻最多只有一个线程在运行,执行任务的顺序是同步的。
使用Semaphore创建字符串池
Semaphore类可以有效地对并发执行任务的线程数量进行限制,这个功能可以应用在pool池技术中,可以设置同时访问pool池中数据的线程数量。
public class ListPool {
private int poolMaxSize = 3;
private int semaphorePermits = 5;
private List<String> list = new ArrayList<>();
private Semaphore concurrentSemaphore = new Semaphore(semaphorePermits);
private ReentrantLock lock = new ReentrantLock();
private Condition condition = lock.newCondition();
public ListPool() {
super();
for (int i = 0; i < poolMaxSize; i++) {
list.add("test-" + (i + 1));
}
}
public String get() {
String string = null;
try {
concurrentSemaphore.acquire();
lock.lock();
while (list.size() == 0) {
condition.await();
}
string = list.remove(0);
lock.unlock();
} catch (Exception e) {
e.printStackTrace();
}
return string;
}
public void put(String string) {
lock.lock();
list.add(string);
condition.signalAll();
lock.unlock();
concurrentSemaphore.release();
}
}
public class MyThread extends Thread {
private ListPool listPool;
public MyThread(ListPool listPool) {
super();
this.listPool = listPool;
}
@Override
public void run() {
for (int i = 0; i < Integer.MAX_VALUE; i++) {
String string = listPool.get();
System.out.println(Thread.currentThread().getName() + "取值:" + string);
listPool.put(string);
}
}
}
public class Main {
public static void main(String[] args) {
ListPool pool = new ListPool();
MyThread[] threads = new MyThread[12];
for (int i = 0; i < threads.length; i++) {
threads[i] = new MyThread(pool);
}
for (int i = 0; i < threads.length; i++) {
threads[i].start();;
}
}
}
程序运行结果如下:
......
Thread-10取值:test-3
Thread-10取值:test-3
Thread-10取值:test-3
Thread-10取值:test-3
Thread-2取值:test-2
Thread-10取值:test-3
Thread-2取值:test-2
Thread-8取值:test-1
Thread-2取值:test-2
Thread-10取值:test-3
Thread-10取值:test-3
Thread-10取值:test-3
Thread-10取值:test-3
Thread-10取值:test-3
......
使用Semaphore实现多生产者/多消费者模式
使用Semaphore可以限制生产者与消费者的数量。Semaphore提供了限制并发线程数的功能,synchronized不提供这个功能。
public class Service {
volatile private Semaphore setSemaphore = new Semaphore(10);//厨师 生产者
volatile private Semaphore getSemaphore = new Semaphore(20);//就餐者 消费者
volatile private ReentrantLock lock = new ReentrantLock();
volatile private Condition setCondition = lock.newCondition();
volatile private Condition getCondition = lock.newCondition();
volatile private Object[] producePosition = new Object[4];//4个盒子存放菜品
private boolean isEmpty() {
boolean isEmpty = true;
for (int i = 0; i < producePosition.length; i++) {
if (producePosition[i] != null) {
isEmpty = false;
break;
}
}
return isEmpty;
}
private boolean isFull() {
boolean isFull = true;
for (int i = 0; i < producePosition.length; i++) {
if (producePosition[i] == null) {
isFull = false;
break;
}
}
return isFull;
}
public void set() {//生产
try {
setSemaphore.acquire();//最多允许10个厨师同时生产
lock.lock();
while (isFull()) {
setCondition.await();
}
for (int i = 0; i < producePosition.length; i++) {
if (producePosition[i] == null) {
producePosition[i] = "数据";
System.out.println(Thread.currentThread().getName() + "生产了:" + producePosition[i]);
break;
}
}
getCondition.signalAll();
lock.unlock();
} catch (Exception e) {
e.printStackTrace();
} finally {
setSemaphore.release();
}
}
public void get() {//消费
try {
getSemaphore.acquire();
lock.lock();
while (isEmpty()) {
getCondition.await();
}
for (int i = 0; i < producePosition.length; i++) {
if (producePosition[i] != null) {
System.out.println(Thread.currentThread().getName() + "消费了:" + producePosition[i]);
producePosition[i] = null;
break;
}
}
setCondition.signalAll();
lock.unlock();
} catch (Exception e) {
e.printStackTrace();
} finally {
getSemaphore.release();
}
}
}
public class ThreadP extends Thread {
private Service service;
public ThreadP(Service service) {
super();
this.service = service;
}
@Override
public void run() {
service.set();
}
}
public class ThreadC extends Thread {
private Service service;
public ThreadC(Service service) {
super();
this.service = service;
}
@Override
public void run() {
service.get();
}
}
public class Main {
public static void main(String[] args) throws InterruptedException {
Service service = new Service();
ThreadP[] threadPs = new ThreadP[60];
ThreadC[] threadCs = new ThreadC[60];
for (int i = 0; i < threadCs.length; i++) {
threadPs[i] = new ThreadP(service);
threadCs[i] = new ThreadC(service);
}
Thread.sleep(2000);
for (int i = 0; i < threadCs.length; i++) {
threadPs[i].start();;
threadCs[i].start();;
}
}
}
运行程序,控制台打印结果如下:
......
Thread-19消费了:数据
Thread-4生产了:数据
Thread-20生产了:数据
Thread-5消费了:数据
Thread-23消费了:数据
Thread-24生产了:数据
Thread-6生产了:数据
Thread-7消费了:数据
Thread-28生产了:数据
......
2016年5月之前的博文发布于51cto,链接地址:shamrock.blog.51cto.com
2016年5月之后博文发布与cnblogs上。
Github地址 https://github.com/umgsai
Keep moving~!!!