Prometheus 14 点实践经验分享

这是 2017 年的 promcon 的分享,原文地址在这里,作者 Julius Volz,今天偶然看到,虽然已经过去 6 年,有些实践经验还是非常值得学习。做个意译,加入一些自己的理解,分享给大家。

埋点方面

1. 所有模块都要埋点

我印象中 Google 有个规范,所有的服务模块,都需要通过 HTTP /varz 接口暴露监控指标,即便是一个纯后端的 RPC 服务,也要暴露一个这样的 HTTP 接口。当然,实操的话,应该是通过框架来统一埋点,但是统一埋点只能埋入一些通用的指标,如果涉及一些自身业务逻辑相关的,还是需要自行埋点。

2. 借鉴 USE 方法论

USE 方法论,即 Utilization、Saturation、Errors 三个维度,即资源的使用率、饱和度、错误。这三个维度,可以用来衡量一个资源是否健康,如果有一个维度不健康,就需要考虑扩容或者优化。USE 方法论提出者是著名大神 Brendan Gregg,他的博客里有很多关于性能优化的文章,非常值得一读。

3. 借鉴 RED 方法论

RED 方法论,即 Request rate、Error rate、Duration,托生自 Google 的四个黄金指标,主要用来衡量微服务的健康度,RED 方法论的原文在 这里

4. 指标命名要有规范

Prometheus 的指标命名,其实是没有约束的,也没有单位的概念,但通常会有一些约定,要尽量遵守,比如:

5. 注意标签基数爆炸

在 Prometheus 生态里,一个时间线的唯一标识是一个 labelset,即多个标签的组合(指标名称其实也是一个特殊标签,标签 Key 是 __name__)。比如 disk_free{host="10.1.2.3", fstype="ext4", path="/data"} 唯一标识了一个时间线。其中 disk_free 是指标名称,实际底层处理的时候,会处理成:{__name__="disk_free", host="10.1.2.3", fstype="ext4", path="/data"},所以说标签集合是唯一标识一个时间线的。如果任一标签变化,就会当成一个新的时间线。一些高基数的信息,就不适合作为标签,比如:

  • 用户访问的来源 IP
  • 用户的 ID
  • 用户请求的 TraceID

6. 统计失败+总量而不要统计失败+成功量

考虑下面两个 counter 指标:

  • failures_total
  • successes_total

如果要计算失败率,可以这么写:

rate(failures_total[5m])
/
(rate(successes_total[5m]) + rate(failures_total[5m]))

写起来相对复杂一些,如果我们统计失败+总量:

  • failures_total
  • requests_total

失败率的计算就会变简单:

rate(failures_total[5m]) / rate(requests_total[5m])

7. 使用默认值提前初始化指标

假设有这么一个指标:ops_total{optype="<type>"},显然,这是想统计不同类型的操作的次数,但是如果某个类型的操作一次都没有发生,那么这个指标就不会出现在 Prometheus 的时间序列里,但你可能在 Grafana 图表和相关告警规则中用到了这样的语句:sum(rate(ops_total{optype="create"}[5m])),如果 create 一次都没有发生,那就没法工作了。一般我们建议,代码埋点的时候要做初始化,比如下面的 Go 语言例子,把已知的操作类型都初始化一下:

for _, val := range opLabelValues {
 // Note: No ".Inc()" at the end.
 ops.WithLabelValues(val)
}

当然,填充默认值的这种方式并非总能奏效。比如 http_requests_total{status="<status>"} 这样的指标,status=~"5.." 过滤器查不到数据时会破坏整个 promql,此时有个比较 tricky 的方法是使用 or 语法:

<expression> or up{job="myjob"} * 0

更多信息可参考这个文章

8. 避免使用无法识别的额外信息标签

比如机器的指标,disk_usage_bytes,如果某个机器部署了服务A,你可能会想这么打标签:disk_usage_bytes{service="a"},但是如果后面这个机器改变了用途,不再部署服务A,而是部署服务B,这个磁盘使用的指标就会变成 disk_usage_bytes{service="b"},而这,由于标签变化,就会导致 Prometheus 会认为这是一个新的时间线,而不是原来的时间线,导致时间线数据不连续。

那怎么办?可以使用 group_left 附加额外标签的方式,具体可以参考这个文章

关于告警

Rob Ewaschuk 有一篇广为流传的文章:My Philosophy on Alerting,推荐大家 Google 一下阅读一下。

9. 告警症状而非原因

原因类指标可以放到仪表盘上用于后续问题根因排查,症状类指标,通常反映的是上层用户的感受,啥是症状类指标?比如:

  • 某个关键服务延迟高,或错误率高
  • 某个磁盘即将在未来 4h 内写满

10. 注意 target 缺失告警

比如下面这个告警规则:

ALERT HighErrorRate
 IF rate(errors_total{job="myjob"}[5m]) > 10
 FOR 5m

看起来挺好的,但是如果你的 target down 掉了或者压根没有被 Prometheus 发现,上面的表达式查不到数据,自然就不会告警。建议,对于关键指标,要一并配置 up 和 absent:

ALERT MyJobInstanceDown
 IF up{job="myjob"} == 0
 FOR 5m

ALERT MyJobAbsent
 IF absent(up{job="myjob"})
 FOR 5m

11. 告警规则通常要配置持续时长

比如下面的告警规则,没有配置持续时长:

ALERT InstanceDown
 IF up == 0

如果有一次抓取失败,就会告警,但实际上可能是网络抖动,实际的 target 是健康的,所以建议配置持续时长:

ALERT InstanceDown
 IF up == 0
 FOR 5m

12. 注意保留关键标签

举例:

Don't:

ALERT HighErrorRate
 IF sum(rate(...)) > x

Do (at least):

ALERT HighErrorRate
 IF sum by(job) (rate(...)) > x

读者可以在即时查询里体验一下,sum 之后,如果不加 by 的逻辑,所有便签就都没了,告警事件发出来信息太少,所以一般建议把关键标签放到 by 后面分组统计。

关于查询

13. 查询表达式通常要过滤到job颗粒度

不同的 job 可能有相同的指标名字,为了避免冲突,尽量把 job 作为过滤条件:

Don't: rate(http_request_errors_total[5m])
Do: rate(http_request_errors_total{job="api"}[5m])

14. 注意 rate() 和 sum() 的顺序

对于 counter 类型的指标,如果服务重启,指标会被重置,从 0 开始重新上报,rate() 函数可以修正这种情况,比如:

20231115190514

正常来讲,应该先求 rate(),再求 sum(),如果弄反了,就麻烦了,比如下面的例子:

20231115190738

译者注:要想玩转 Prometheus,其实还是有门槛的,但是大部分公司首先会把人力投入到自己的赚钱业务上,监控或者可观测性系统,这种偏辅助类的基础设施,没有精力搞,巧了,我们创业就是提供可观测性平台和服务,如果您对我们放心,欢迎联系我们,我们会提供一流的服务。

译者:秦晓辉,Open-Falcon、Nightingale、Categraf 等开源项目创始研发人员,极客时间专栏《运维监控系统实战笔记》作者,目前在创业,提供可观测性产品,微信 picobyte,欢迎加好友交流,加好友请备注公司。

微信公众号不好贴外部链接,更好的阅读体验可以访问:https://flashcat.cloud/blog/prometheus-best-practices-and-beastly-pitfalls/

posted @ 2023-12-29 18:21  IT运维监控  阅读(75)  评论(0编辑  收藏  举报