策码奔腾

度量信息的两种方式:信息熵和基尼不纯度

 

  1.信息熵公式:

 

 

     p(x)为某个特征的概率,介于0到1之间

  2.基尼不纯度公式:

 

 

     p(i)为某个特征的概率,介于0到1之间

 

 

 

  3.假设某集合只有一个分类,该分类有相反的两个特征,那么 

    信息熵公式可以简化为-xlog2x-(1-x)log2(1-x),对应图像:

 

 

 

 

 

 

 

     基尼不纯度公式可以简化为x(1-x),对应图像(为了方便对比乘以了4倍):

 

 

 

 

 

 

  4.总结

    1.可以看出两者的函数图非常接近,信息熵的两侧弧度稍微比基尼不纯度大一点。

    2.在特征概率为0.5时信息量最大,特征概率为0或1时信息量为零。

    3. 两者都可用于衡量系统混乱程度,y值越大,混乱程度越高,信息量也越大。

 

posted @ 2021-08-10 17:16  策码奔腾  阅读(650)  评论(0编辑  收藏  举报
console.log('欢迎');