Robot Arms AtCoder - 4432 (构造)
大意: 给定平面上$n$个点$(x_i,y_i)$. 要求构造一个序列$d$, $d_i$表示每步走的距离, 再构造$n$个命令串, 要求从原点出发按照第$i$个命令走, 走完恰好到达$(x_i,y_i)$.
构造完全没思路, 看了题解才懂
首先若存在两个点的$x+y$的奇偶性不同, 那么显然无解.
其余情况假设$x+y$为奇数, 那么构造$d=1,2,4,8,16,...$, 然后命令可以贪心构造出来.
若$x+y$为偶数, $d$中添加一个$1$, 变为奇数的情况即可.
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <cmath> #include <set> #include <map> #include <queue> #include <string> #include <cstring> #include <bitset> #include <functional> #include <random> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<',';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head const int N = 1e5+10; int n, a[N], b[N], d[N]; char s[N]; int main() { scanf("%d", &n); int c[2]{}; REP(i,1,n) { scanf("%d%d",a+i,b+i); ++c[a[i]+b[i]&1]; } if (c[0]!=n&&c[1]!=n) return puts("-1"),0; printf("%d\n",31+!!c[0]); REP(i,0,30) printf("%d ", 1<<i); if (c[0]) printf("%d ", 1); hr; REP(i,1,n) { int x = a[i], y = b[i]; if (c[0]) --x, s[31] = 'R'; int f = 0; PER(i,0,30) { if (abs(x)<abs(y)) swap(x,y), f^=1; if (x>0) x-=1<<i,s[i]="RU"[f]; else x+=1<<i,s[i]="LD"[f]; } puts(s); } }