And Reachability CodeForces - 1169E (有向图可达性)
大意: 给定序列$a$, 对所有的a[i]&a[j]>0, 从$i$向$j$连一条有向边, 给出$m$个询问$(x,y)$, 求是否能从$x$到达$y$.
裸的有向图可达性, 有向图可达性直接暴力是$O(n^3)$的, 或者可以用$bitset$优化到$O(\frac{n^3}{\omega})$
但是这个图比较特殊, 显然每个点向后最多连20条边即可, 就可以做到$O(20^2n)$预处理.
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head const int N = 1e6+10; int n, q, a[N]; int dp[N][22], f[22]; int main() { scanf("%d%d", &n, &q); REP(i,1,n) scanf("%d", a+i); REP(i,0,20) f[i] = n+1; PER(i,1,n) { REP(j,0,20) dp[i][j] = n+1; REP(j,0,20) if (a[i]>>j&1) { dp[i][j] = f[j]; REP(k,0,20) if (dp[f[j]][k]) dp[i][k]=min(dp[i][k],dp[f[j]][k]); } REP(j,0,20) if (a[i]>>j&1) f[j]=i; } while (q--) { int x, y, flag = 0; scanf("%d%d", &x, &y); REP(j,0,20) if ((a[y]>>j&1)&&dp[x][j]<=y) flag = 1; puts(flag?"Shi":"Fou"); } }