牛客 40F 珂朵莉的约数 (莫队)
珂朵莉给你一个长为n的序列,有m次查询
每次查询给两个数l,r
设s为区间[l,r]内所有数的乘积
求s的约数个数mod 1000000007
直接莫队暴力维护复杂度是$O(8m\sqrt{m})$.
看了官方题解, 序列权值比较小, 权值<1000的素数暴力维护, >1000的素数最多只有1个, 用莫队维护, 这样能优化掉8的常数.
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head const int N = 1e6+10; int n, m, sqn; int gpf[N], ans[N], blo[N]; int inv[N]; vector<pii> a[N]; struct _ { int l,r,id; bool operator < (const _ & rhs) const { return blo[l]^blo[rhs.l]?l<rhs.l:blo[l]&1?r<rhs.r:r>rhs.r; } } e[N]; int cnt[N], now=1; void upd(int x, int v) { for (auto &&t:a[x]) { now = (ll)now*inv[cnt[t.x]+1]%P; cnt[t.x] += v*t.y; now = (ll)now*(cnt[t.x]+1)%P; } } int main() { scanf("%d%d", &n, &m),sqn=pow(n,0.55); inv[1] = 1; REP(i,2,N-1) inv[i]=(ll)inv[P%i]*(P-P/i)%P; gpf[1] = 1; REP(i,1,N-1) if (!gpf[i]) for (int j=i;j<N;j+=i) gpf[j]=i; REP(i,1,n) { int t; scanf("%d", &t); while (t!=1) { int x = gpf[t], y = 0; while (t%x==0) t/=x,++y; a[i].pb(pii(x,y)); } blo[i]=i/sqn; } REP(i,1,m) scanf("%d%d",&e[i].l,&e[i].r),e[i].id=i; sort(e+1,e+1+m); int ql=1, qr=0; REP(i,1,m) { while (ql>e[i].l) upd(--ql,1); while (qr<e[i].r) upd(++qr,1); while (ql<e[i].l) upd(ql++,-1); while (qr>e[i].r) upd(qr--,-1); ans[e[i].id] = now; } REP(i,1,m) printf("%d\n",ans[i]); }