匈牙利算法板子
复杂度$O(VE)$, 处理完后, $f$数组前$n$位一定为$0$, 后$m$位存储对应匹配.
const int N = 2e3+10; int n, m, e, clk, f[N], vis[N]; vector<int> g[N]; int dfs(int x) { for (int y:g[x]) if (vis[y]!=clk) { vis[y] = clk; if (!f[y]||dfs(f[y])) return f[y]=x; } return 0; } int main() { scanf("%d%d%d", &n, &m, &e); REP(i,1,e) { int u, v; scanf("%d%d", &u, &v); if (u>n||v>m) continue; g[u].pb(v+n); g[v+n].pb(u); } int ans = 0; REP(i,1,n) { ++clk; if (dfs(i)) ++ans; } printf("%d\n", ans); }
求有向无环图最小路径覆盖.
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head #ifdef ONLINE_JUDGE const int N = 1e6+10; #else const int N = 111; #endif int n, m, clk, f[N], vis[N]; int deg[N], nxt[N]; vector<int> g[N]; int dfs(int x) { for (int y:g[x]) if (vis[y]!=clk) { vis[y]=clk; if (!f[y]||dfs(f[y])) return f[y]=x; } return 0; } int main() { scanf("%d%d", &n, &m); REP(i,1,m) { int u, v; scanf("%d%d", &u, &v); g[u].pb(v+n); g[v+n].pb(u); } int ans = 0; REP(i,1,n) { ++clk; if (dfs(i)) ++ans; } REP(i,n+1,2*n) if (f[i]) nxt[f[i]]=i-n,deg[i-n]=1; REP(i,1,n) if (!deg[i]) { int u = i; do printf("%d ",u),u=nxt[u]; while (u); hr; } printf("%d\n", n-ans); }