Makoto and a Blackboard CodeForces - 1097D (积性函数dp)
大意: 初始一个数字$n$, 每次操作随机变为$n$的一个因子, 求$k$次操作后的期望值.
设$n$经过$k$次操作后期望为$f_k(n)$.
就有$f_0(n)=n$, $f_k(n)=\frac{\sum\limits_{d|n}{f_{k-1}(d)}}{\sigma_0(n)}, k>0$.
显然$f_k(n)$为积性函数, $dp$算出每个素因子的贡献即可.
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head const int N = 1e4+10; int dp[N][70], sum[N][70], mi[N]; int DP(int p, int k, int r) { memset(dp,0,sizeof dp); memset(sum,0,sizeof sum); sum[0][0] = dp[0][0] = 1; REP(i,1,k) sum[0][i]=(sum[0][i-1]+(dp[0][i]=(ll)dp[0][i-1]*p%P))%P; REP(i,1,r) { sum[i][0] = dp[i][0] = 1; REP(j,1,k) sum[i][j]=(sum[i][j-1]+(dp[i][j]=sum[i-1][j]*inv(j+1)%P))%P; } return dp[r][k]; } int main() { int k; ll n; scanf("%lld%d", &n, &k); int mx = sqrt(n+0.5), ans = 1; REP(i,2,mx) if (n%i==0) { int x = 0; while (n%i==0) n/=i, ++x; ans = (ll)ans*DP(i,x,k)%P; } if (n>1) ans = (ll)ans*DP(n%P,1,k)%P; if (ans<0) ans+=P; printf("%d\n", ans); }