Largest Beautiful Number CodeForces - 946E (贪心)
大意: 定义一个好数为位数为偶数, 且各位数字重排后可以为回文, 对于每个询问, 求小于$x$的最大好数.
假设$x$有$n$位, 若$n$为奇数, 答案显然为$n-1$个9. 若为偶数, 我们想让答案尽量大, 那么就要尽量调整$x$的低位数, 从低位到高位遍历, 假设当前处理到第$i$位, 对于判断重排后回文可以用一个长为10的二进制数来判断, 假设$[i+1,n]$状态为$t$, 那么问题就转化为求最大的小于$t$且二进制状态为$s$的数, 贪心填数即可, 若对于每一位都无解答案就为$n-2$个9.
第一次写这种涉及数位的贪心模拟, 感觉还是挺烦的, 进位要多注意, 贪心时的因为要多次进行可行性判断, 一定要写成函数.
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head #ifdef ONLINE_JUDGE const int N = 1e6+10; #else const int N = 111; #endif char s[N]; int n, f[N], cnt[N], num[N]; int pos[N], p[15]; int chk(int i, int sta, int flag) { if (i>n) return 1; int sz = 0; REP(i,0,9) if (sta>>i&1) p[++sz]=i; if (sz>n-i+1||(sz&1)!=(n-i+1&1)) return 0; if (flag) return 1; if (i+pos[i]-1+sz>n) return 0; if (i+pos[i]-1+sz==n) { int ok = 0; REP(j,i+pos[i],n) { if (s[j]<p[j-i-pos[i]+1]) return 0; if (s[j]>p[j-i-pos[i]+1]) return 1; } return 0; } return 1; } void work() { scanf("%s", s+1); n = strlen(s+1); if (n&1) { REP(i,1,n-1) putchar('9');hr; return; } REP(i,1,n) s[i]-='0'; REP(i,1,n) f[i]=f[i-1]^(1<<s[i]); pos[n+1]=0; PER(i,1,n) pos[i]=s[i]?0:pos[i+1]+1; PER(i,1,n) { int sta = f[i-1]; if (!chk(i,sta,0)) continue; int flag = 0; REP(j,i,n-1) { if (!flag) { if (chk(j+1,sta^1<<s[j],flag)) { sta ^= s[j]; continue; } flag = 1; PER(k,0,s[j]-1) if (chk(j+1,sta^1<<k,flag)) { s[j] = k, sta ^= 1<<k; break; } } else { PER(k,0,9) if (chk(j+1,sta^1<<k,1)) { s[j] = k, sta ^= 1<<k; } } } REP(j,0,9) if (sta>>j&1) s[n]=j; if (!s[1]) break; REP(j,1,n) printf("%d", s[j]);hr; return; } REP(i,1,n-2) putchar('9');hr; } int main() { int t; scanf("%d", &t); while (t--) work(); }