bzoj 5068: 友好的生物
大意: $n$个生物, 每个生物有$K$种属性, 两个生物之间的友好度通过下式计算.
$Friendliness=(\sum\limits_{i=1}^{K-1}C_i \times \text{属性$i$的差别})-C_K \times \text{属性$K$的差别}$
$C$为给定非负数组, 求友好度最大值.
$\sum |A_i-B_i| = \max\limits_{f_i\in \{0,1\}} \sum f_i(A_i-B_i)$
暴力枚举正负情况去绝对值号.
#include <iostream> #include <iostream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head #ifdef ONLINE_JUDGE const int N = 1e6+10; #else const int N = 111; #endif int n, k, c[N]; struct _ { int a[10]; bool operator < (const _ & rhs) const { return a[k] < rhs.a[k]; } } a[N]; int main() { scanf("%d%d", &n, &k); REP(i,1,k) scanf("%d",c+i); REP(i,1,n) REP(j,1,k) { scanf("%d", &a[i].a[j]); a[i].a[j] *= c[j]; } sort(a+1,a+1+n); int mx = (1<<k-1)-1, ans = 0; REP(j,0,mx) { int mi = 1e9; REP(i,1,n) { int r = 0; REP(ii,0,k-2) { r += j>>ii&1?-a[i].a[ii+1]:a[i].a[ii+1]; } r -= a[i].a[k]; ans = max(ans, r-mi); mi = min(mi, r); } } printf("%d\n", ans); }