Codeforces Round #364 (Div. 1) (差一个后缀自动机)
B. Connecting Universities
大意: 给定树, 给定2*k个点, 求将2*k个点两两匹配, 每个匹配的贡献为两点的距离, 求贡献最大值
单独考虑每条边$(u,v)$的贡献即可, 最大贡献显然是左右两侧点的最小值.
#include <iostream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} //head const int N = 1e6+10; int n, k; int a[N], sz[N]; vector<int> g[N]; ll ans; void dfs(int x, int fa) { sz[x] = a[x]; for (int y:g[x]) if (y!=fa) { dfs(y,x), sz[x]+=sz[y]; ans += min(sz[y], k-sz[y]); } } int main() { scanf("%d%d", &n, &k),k*=2; REP(i,1,k) { int t; scanf("%d", &t); a[t] = 1; } REP(i,2,n) { int u, v; scanf("%d%d", &u, &v); g[u].pb(v),g[v].pb(u); } dfs(1,0); printf("%lld\n", ans); }
C. Break Up
大意: 无向有权图有重边自环, 求删除两条边使得s与t不连通, 且两条边的边权和最小.
先求出任意一条最短路径, 边数显然不超过$n$, 暴力枚举这$n$条边然后再tarjan即可, 复杂度O(n(m+n))
算是挺简单的了, 还是打了好久, 一直卡在怎么判断删除一条边后是否连通, 后来发现tarjan后从s->t经过的桥一定是一条链, 所以直接dfs就好了, 最后还要注意边权1e9+1e9爆掉0x3f3f3f3f了.
#include <iostream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = ~0u>>1; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} //head const int N = 3e4+10; int n, m, S, T; int w[N]; struct _ {int to,id;} fa[N]; vector<_> g[N]; int dfn[N], low[N], isbridge[N], clk; void tarjan(int x, int fa, int z) { dfn[x]=low[x]=++clk; for (auto &&e:g[x]) if (e.id!=z) { int y = e.to, id = e.id; if (!dfn[y]) { tarjan(y,id,z); low[x]=min(low[x],low[y]); if (low[e.to]>dfn[x]) isbridge[id]=1; } else if (dfn[y]<dfn[x]&&id!=fa) { low[x]=min(low[x],dfn[y]); } } } int vis[N], c[N]; int dfs(int x) { if (x==T) return 1; for (auto e:g[x]) if (!vis[e.id]) { vis[e.id] = 1; if (dfs(e.to)) return c[e.id] = 1; } return 0; } int main() { scanf("%d%d%d%d", &n, &m, &S, &T); REP(i,1,m) { int u, v; scanf("%d%d%d", &u, &v, w+i); g[u].pb({v,i}), g[v].pb({u,i}); } queue<int> q; fa[S].to=-1, q.push(S); while (q.size()) { int x = q.front(); q.pop(); for (auto &&e:g[x]) if (!fa[e.to].to) { fa[e.to]={x,e.id}, q.push(e.to); } } if (!fa[T].to) return puts("0\n0"),0; int ans = INF; vector<int> vec; for (int x=T; x!=S; x=fa[x].to) { int id = fa[x].id; memset(vis,0,sizeof vis); memset(c,0,sizeof c); vis[id] = 1; if (!dfs(S)) { if (ans>w[id]) ans = w[id],vec.clear(),vec.pb(id); continue; } memset(dfn,0,sizeof dfn); memset(isbridge,0,sizeof isbridge); clk = 0; tarjan(S,0,id); REP(i,1,m) if (c[i]&&isbridge[i]&&ans>w[id]+w[i]) { ans=w[id]+w[i]; vec.clear(); vec.pb(id), vec.pb(i); } } if (ans==INF) return puts("-1"),0; printf("%d\n%d\n", ans, int(vec.size())); for (int t:vec) printf("%d ", t); hr; }
D. Huffman Coding on Segment
莫队一下, 然后将出现次数小于等于$\sqrt{n}$的暴力合, 其余的用堆合, 复杂度$O(m\sqrt{n}logn)$, 看了下最优解, 好像可以排序一下省去堆从而优化掉一个log
#include <iostream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} //head #ifdef ONLINE_JUDGE const int N = 1e6+10; #else const int N = 111; #endif int n, m, sqn; int blo[N], cnt[N], sum[N], s[N], a[N]; struct _ { int l,r,id; bool operator < (const _ & rhs) const { return blo[l]^blo[rhs.l]?l<rhs.l:blo[l]&1?r<rhs.r:r>rhs.r; } } e[N]; ll ans[N]; vector<int> q; void upd(int x, int d) { --sum[cnt[x]]; cnt[x]+=d; ++sum[cnt[x]]; } ll calc() { ll ans = 0; REP(i,1,sqn) s[i] = sum[i]; priority_queue<int,vector<int>,greater<int> > Q; int pre = 0; REP(i,1,sqn) if (s[i]) { if (pre) { int x = pre+i; ans += x; if (x>sqn) Q.push(x); else ++s[x]; --s[i], pre = 0; } if (s[i]&1) --s[i], pre = i; ans += s[i]*i; if (i*2<=sqn) s[i*2]+=s[i]/2; else { REP(j,1,s[i]/2) Q.push(i*2); } } if (pre) Q.push(pre); for (auto i:q) if (cnt[i]>sqn) Q.push(cnt[i]); while (Q.size()>1) { int x = Q.top(); Q.pop(); x += Q.top(); Q.pop(); ans += x, Q.push(x); } return ans; } int main() { scanf("%d", &n), sqn = sqrt(n); REP(i,1,n) scanf("%d",a+i),++cnt[a[i]],blo[i]=i/sqn; REP(i,1,N-1) if (cnt[i]>sqn) q.pb(i); memset(cnt,0,sizeof cnt); scanf("%d", &m); REP(i,1,m) scanf("%d%d",&e[i].l,&e[i].r),e[i].id=i; sort(e+1,e+1+m); int ql=1,qr=0; REP(i,1,m) { while (ql<e[i].l) upd(a[ql++],-1); while (qr>e[i].r) upd(a[qr--],-1); while (ql>e[i].l) upd(a[--ql],1); while (qr<e[i].r) upd(a[++qr],1); ans[e[i].id]=calc(); } REP(i,1,m) printf("%lld\n", ans[i]); }
E. Cool Slogans
后缀自动机还没学, 以后补了