Nastya Is Buying Lunch CodeForces - 1136D (排列)
大意: 给定n排列, m个pair, 每个pair(u,v), 若u,v相邻, 且u在v左侧, 则可以交换u和v, 求a[n]最多向左移动多少
经过观察可以发现, 尽量先用右侧的人与a[n]交换, 这样一定最优, 然后从右往左遍历, 假设a[n]当前在$pos$, 再观察可以发现, 若$a[x]$产生贡献, 当且仅当$[x+1,pos]$都与$x$连边, 然后统计一下边数就可以$O(n+m)$了
#include <iostream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} //head const int N = 1e6+10; int n, m; int a[N], cnt[N]; vector<int> g[N]; int main() { scanf("%d%d", &n, &m); REP(i,1,n) scanf("%d", a+i); REP(i,1,m) { int x, y; scanf("%d%d", &x, &y); g[y].pb(x); } for (auto &t:g[a[n]]) ++cnt[t]; int ans = 0; PER(i,1,n-1) { if (n-i-ans==cnt[a[i]]) ++ans; else { for (auto &t:g[a[i]]) ++cnt[t]; } } printf("%d\n", ans); }