Greedy Subsequences CodeForces - 1132G
我们从右往左滑动区间, 假设dp[i]表示i为左端点时的最大长度, 通过观察可以发现, 每添加一个点, 该点$dp$值=它右侧第一个比它大位置处$dp$值+1, 但是每删除一个点会将所有以它为根的$dp$值全-1, 所以可以根据转移建一棵树, 需要有单点查询单点更新以及树链加, 可以用线段树维护dfs序$O(logn)$实现, 或者直接树剖$O(nlog^2n)$
#include <iostream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} //head #ifdef ONLINE_JUDGE const int N = 1e6+10; #else const int N = 111; #endif int n, k; vector<int> g[N], q; int a[N], L[N], R[N], dp[N], fa[N], ans[N]; int val[N<<2], tag[N<<2]; int no[N]; void dfs(int x) { L[x]=++*L,no[*L]=x; for (int y:g[x]) dfs(y); R[x]=*L; } void pd(int o) { if (tag[o]) { tag[lc]+=tag[o]; tag[rc]+=tag[o]; val[lc]+=tag[o]; val[rc]+=tag[o]; tag[o]=0; } } void upd1(int o, int l, int r, int ql, int qr, int v) { if (ql<=l&&r<=qr) return val[o]+=v,tag[o]+=v,void(); pd(o); if (mid>=ql) upd1(ls,ql,qr,v); if (mid<qr) upd1(rs,ql,qr,v); val[o]=max(val[lc],val[rc]); } void upd2(int o, int l, int r, int x, int v) { if (l==r) return val[o]=v,void(); pd(o); if (mid>=x) upd2(ls,x,v); else upd2(rs,x,v); val[o]=max(val[lc],val[rc]); } int qry(int o, int l, int r, int x) { if (l==r) return val[o]; pd(o); if (mid>=x) return qry(ls,x); return qry(rs,x); } void dfs(int o, int l, int r) { if (l==r) printf("no=%d,a=%d,val=%d\n",no[l],a[no[l]],val[o]); else pd(o),dfs(ls),dfs(rs); } int main() { scanf("%d%d", &n, &k); REP(i,1,n) scanf("%d", a+i); a[++n] = INF; q.pb(n); PER(i,1,n-1) { while (a[i]>=a[q.back()]) q.pop_back(); int j = q.back(); g[j].pb(i), fa[i] = j, q.pb(i); } dfs(n); PER(i,1,n-1) { if (i+k<n) upd1(1,1,n,L[i+k],R[i+k],-1); if (fa[i]-i>=k) dp[i] = 1; else dp[i] = qry(1,1,n,L[fa[i]])+1; upd2(1,1,n,L[i],dp[i]); if (i+k<=n) ans[i]=val[1]; } REP(i,1,n-k) printf("%d ", ans[i]);hr; }