图的分块

 

基本思想是按点的度数划分为重点(deg>=sqrt(m))和轻点(deg<sqrt(m)), 轻点暴力更新, 重点只更新邻接的重点.

 

 

例1. hdu 4858 项目管理

该题算简单入门了.

#include <iostream>
#include <algorithm>
#include <math.h>
#include <cstdio>
#include <vector>
#define pb push_back
#define REP(i,a,n) for(int i=a;i<=n;++i)
using namespace std;
typedef long long ll;

const int N = 1e5+10, INF = 0x3f3f3f3f;
int n, m, q, sqn;
int deg[N], u[N], v[N];
ll sum[N], val[N];
vector<int> g[N];

void work() {
	scanf("%d%d", &n, &m), sqn = sqrt(m);
	REP(i,1,n) g[i].clear(), deg[i]=sum[i]=val[i]=0;
	REP(i,1,m) {
		scanf("%d%d", u+i, v+i);
		++deg[u[i]], ++deg[v[i]];
	}
	REP(i,1,m) {
		if (deg[u[i]]>=sqn&&deg[v[i]]>=sqn) {
			g[u[i]].pb(v[i]),g[v[i]].pb(u[i]);
		}
		if (deg[u[i]]<sqn) g[u[i]].pb(v[i]);
		if (deg[v[i]]<sqn) g[v[i]].pb(u[i]);
	}
	scanf("%d", &q);
	REP(i,1,q) {
		int op, x, v;
		scanf("%d%d", &op, &x);
		if (op==0) {
			scanf("%d", &v);
			val[x] += v;
			for (int y:g[x]) if (deg[y]>=sqn) sum[y]+=v;
		} else {
			ll ans = 0;
			if (deg[x]<sqn) for (int y:g[x]) ans += val[y];
			else ans = sum[x];
			printf("%lld\n", ans);
		}
	}
}

int main() {
	int t;
	scanf("%d", &t);
	REP(i,1,t) work();
}

 

 

例2: hdu 4467 Graph

大意: 每个点都有一个颜色0或1, 每次询问求所有端点颜色为x,y的边权和, 每次修改翻转一个点的颜色.

思路还是同上题, 对于轻点的修改, 直接暴力. 对于重点的修改只暴力改重点之间的边, 然后再$O(1)$更新重点与轻点的边. 但本题比较卡常, 需要将边离散化去重一下.

其中$ans$用于记录答案, $val$用于记录每个重点与轻点相连边权和.

#include <iostream>
#include <algorithm>
#include <math.h>
#include <cstdio>
#include <set>
#include <string>
#include <vector>
#define pb push_back
#define REP(i,a,n) for(int i=a;i<=n;++i)
using namespace std;
typedef long long ll;

const int N = 1e5+10, INF = 0x3f3f3f3f;
int n, m, sqn, col[N];
struct _ {
    int u,v;
    ll w;
    bool operator < (const _ & rhs) const {
        if (u==rhs.u) return v<rhs.v;
        return u<rhs.u;
    }
} e[N];
vector<_> g[N];
ll ans[3], val[N][2];
int deg[N];

void update(int x) {
    for (_ e:g[x]) {
        ans[col[x]+col[e.v]]-=e.w;
        ans[(col[x]^1)+col[e.v]]+=e.w;
        if (deg[x]<sqn) {
            val[e.v][col[x]]-=e.w;
            val[e.v][col[x]^1]+=e.w;
        }
    }
    if (deg[x]>=sqn) {
        ans[col[x]]-=val[x][0];
        ans[col[x]+1]-=val[x][1];
        ans[col[x]^1]+=val[x][0];
        ans[(col[x]^1)+1]+=val[x][1];
    }
    col[x] ^= 1;
}

void work() {
    REP(i,1,n) scanf("%d", col+i);
    REP(i,1,n) val[i][0]=val[i][1]=deg[i]=0, g[i].clear();
    REP(i,0,2) ans[i]=0;
    REP(i,1,m) {
        scanf("%d%d%lld", &e[i].u, &e[i].v, &e[i].w);
        if (e[i].u>e[i].v) swap(e[i].u,e[i].v);
    }
    sort(e+1,e+1+m);
    int now = 0;
    REP(i,1,m) {
        if (e[i].u!=e[now].u||e[i].v!=e[now].v) e[++now]=e[i];
        else e[now].w += e[i].w;
    }
    m = now, sqn = sqrt(m);
    REP(i,1,m) { 
        ans[col[e[i].u]+col[e[i].v]] += e[i].w;
        ++deg[e[i].u],++deg[e[i].v];
    }
    REP(i,1,m) {
        if (deg[e[i].u]>=sqn&&deg[e[i].v]>=sqn) {
            g[e[i].u].pb({0,e[i].v,e[i].w});
            g[e[i].v].pb({0,e[i].u,e[i].w});
        }
        if (deg[e[i].u]<sqn) g[e[i].u].pb({0,e[i].v,e[i].w});
        if (deg[e[i].v]<sqn) g[e[i].v].pb({0,e[i].u,e[i].w});
    }
    REP(x,1,n) if (deg[x]<sqn) { 
        for (_ e:g[x]) {
            if (deg[e.v]>=sqn) val[e.v][col[x]]+=e.w;
        }
    }
    int q;
    scanf("%d", &q);
    REP(i,1,q) {
        char s[15];
        int x, y;
        scanf("%s%d", s, &x);
        if (*s=='A') {
            scanf("%d", &y);
            printf("%lld\n", ans[x+y]);
        } else update(x);
    }
}

int main() {
    for (int kase = 1; ~scanf("%d%d", &n, &m); ++kase) {
        printf("Case %d:\n", kase);
        work();
    }
}

 

posted @ 2019-02-26 00:04  uid001  阅读(283)  评论(0编辑  收藏  举报