知识图谱介绍(一)
一、概述
二、知识图谱的架构
知识图谱的架构主要可以被分为:
- 逻辑架构
- 技术架构
- 相关技术
1、 逻辑架构
在逻辑上,我们通常将知识图谱划分为两个层次:数据层和模式层。
- 模式层:在数据层之上,是知识图谱的核心,存储经过提炼的知识,通常通过本体库来管理这一层(本体库可以理解为面向对象里的“类”这样一个概念,本体库就储存着知识图谱的类)。
- 数据层:存储真实的数据。
例子:
模式层:实体-关系-实体,实体-属性-性值
数据层:吴京-妻子-谢楠,吴京-导演-战狼Ⅱ
2、 技术架构
知识图谱的整体架构如图所示,其中虚线框内的部分为知识图谱的构建过程,同时也是知识图谱更新的过程。别紧张,让我们顺着这张图来理一下思路。
首先,我们有一大堆的数据,这些数据可能是结构化的、非结构化的以及半结构化的;
然后,我们基于这些数据来构建知识图谱,这一步主要是通过一系列自动化或半自动化的技术手段,来从原始数据中提取出知识要素,即一堆实体关系,并将其存入我们的知识库的模式层和数据层。
3、图谱相关技术
三、知识图谱的基础理论
2.1定义与分类
知识图谱是一种通过图形结构表达知识的方法,它通过节点(实体)和边(关系)来表示和存储现实世界中的各种对象及其相互联系。这些实体和关系构成了一个复杂的网络,使得知识的存储不再是孤立的,而是相互关联和支持的。
知识图谱根据其内容和应用领域可以分为多种类型。例如,通用知识图谱旨在覆盖广泛的领域知识,如Google的Knowledge Graph;而领域知识图谱则专注于特定领域,如医疗、金融等。此外,根据构建方法的不同,知识图谱还可以分为基于规则的、基于统计的和混合型知识图谱。
- 实体(Entity)指的是现实世界中的事物,是图里的节点。
- 关系(Relation)指的是不同实体之间的某种联系,是图里的“边”。
2.2核心组成(实体-关系-实体”三元组)
知识图谱的核心组成元素包括实体、关系和属性。实体是知识图谱中的基本单位,代表现实世界中的对象,如人、地点、组织等。关系则描述了实体之间的各种联系,例如“属于”、“位于”等。属性是对实体的具体描述,如年龄、位置等。这些元素共同构成了知识图谱的骨架,使得知识的组织和检索变得更加高效和精确。
案例:
知识图谱的基本单位,就是“实体(Entity)-关系(Relationship)-实体(Entity)” 构成的三元组,这也是知识图谱的核心
2.3历史与发展
知识图谱的概念最早可以追溯到语义网和链接数据的概念。早期的语义网关注于如何使网络上的数据更加机器可读,而链接数据则强调了数据之间的关联。知识图谱的出现是对这些理念的进一步发展和实践应用,它通过更加高效的数据结构和技术,使得知识的表示、存储和检索更加高效和智能。
随着人工智能和大数据技术的发展,知识图谱在自然语言处理、机器学习等领域得到了广泛应用。例如,知识图谱在提升搜索引擎的智能化、优化推荐系统的准确性等方面发挥了重要作用。此外,随着技术的不断进步,知识图谱的构建和应用也在不断地演变和优化,包括利用深度学习技术进行知识提取和图谱构建,以及在更多领域的应用拓展。
2.4图谱构建技术分类
知识图谱的构建技术主要有自顶向下和自底向上两种。
- 自顶向下构建:借助百科类网站等结构化数据源,从高质量数据中提取本体和模式信息,加入到知识库里。
- 自底向上构建:借助一定的技术手段,从公开采集的数据中提取出资源模式,选择其中置信度较高的信息,加入到知识库中。
2.5数据类型和存储方式
知识图谱的原始数据类型一般来说有三类(也是互联网上的三类原始数据):
结构化数据(Structed Data),如:关系数据库、链接数据
半结构化数据(Semi-Structured Data),如:XML、JSON、百科
非结构化数据(Unstructured Data),如:图片、音频、视频
知识图谱的数存储方式:
四、知识图谱构建三要素:实体、关系与属性
知识图谱的三大基本要素——实体(Entity)、关系(Relationship)和属性(Attribute)——构成了其基础框架。这些要素不仅是构建知识图谱的基石,而且在实际应用中发挥着至关重要的作用。
4.1实体(Entity)
4.1.1实体的概念
- 实体是构建知识图谱的基本单元,代表现实世界中的对象,如人物、地点、组织等。实体的准确识别和分类是构建知识图谱的首要步骤。在数据科学领域,实体识别不仅有助于理解数据的语义内容,还能为后续的数据分析提供关键信息。例如,在自然语言处理(NLP)中,准确识别文本中的实体是情感分析、文本分类等任务的前提。
- 在人工智能领域,实体的应用更为广泛。AI模型可以利用实体之间的关系和属性来理解复杂的语义信息,从而提高语言理解、推荐系统等应用的准确性和效率。例如,在智能问答系统中,通过对用户查询中的实体进行识别和解析,系统能更快地提供准确的答案。
- 实体可以是具体的物理对象,如“苹果公司”、“黄山”;也可以是抽象概念,如“爱情”、“经济学”。在知识图谱中,每个实体都具有唯一的标识和一系列描述其特征的属性。例如,对于实体“苹果公司”,其属性可能包括成立日期、创始人、总部所在地等。
- 实体的有效表示是知识图谱质量的基础。在实体表示中,不仅要考虑实体的内在属性,还要考虑实体之间的关系。这种多维度的表示方式有助于在知识图谱中更准确地反映实体的特征。
4.1.2实体的分类
实体分类是将实体划分为不同类别的过程。这一过程通常基于实体的属性、关系以及所属的上下文。例如,实体可以根据其性质被分类为人物、组织、地点、事件等。在自然语言处理(NLP)中,实体识别(Named Entity Recognition, NER)是实体分类的一个常见应用,它涉及从文本中识别出具有特定类别的实体。
4.1.3实体识别的技术细节
实体识别主要包括两个步骤:实体边界识别和实体类别分类。传统的实体识别方法依赖于大量的规则和词典,但这种方法在处理复杂文本时往往效果不佳。随着深度学习的发展,基于神经网络的方法成为主流。比如,双向长短时记忆网络(BiLSTM)结合条件随机场(CRF)的模型在NER任务中表现出色。
此外,预训练语言模型,如BERT(Bidirectional Encoder Representations from Transformers),通过理解上下文语义,能够更准确地识别实体。BERT等模型通过在大量无标注文本上进行预训练,学习到了丰富的语言特征,从而能够有效地应用于实体识别任务。
4.1.4实体识别的实际应用举例
一个典型的实体识别应用是在新闻文章中识别出特定的人物、地点和组织名。例如,通过分析一篇关于国际政治的新闻报道,实体识别系统可以识别出文中提到的国家领导人、国家名称、重要事件等实体。这对于新闻聚合、信息检索、舆情分析等领域具有重要意义。
在医疗领域,实体识别可用于从临床文本中提取病人的症状、药物名称、疾病等信息,这对于病历分析、医疗决策支持系统等应用至关重要。
4.2关系(Relationship)
4.2.1关系的概念
- 关系是连接不同实体的纽带,表示实体之间的各种相互作用和联系。在知识图谱中,关系不仅增加了实体之间的联系,还丰富了知识图谱的语义层次。还为高级数据分析和人工智能应用提供了必要的结构化信息关系的识别和分类对于理解实体之间的相互作用至关重要。
- 在数据科学中,关系分析可以揭示数据之间的隐藏模式和趋势,为决策支持和洞察挖掘提供重要依据。例如,在社交网络分析中,通过分析用户之间的关系,可以发现社群结构,预测用户行为。
- 人工智能领域中,关系的识别和分析对于提升算法的理解能力和决策质量尤为关键。例如,在知识图谱驱动的推荐系统中,通过分析用户与商品之间的关系,系统可以提供更精准的个性化推荐。
- 关系可以是具体的,如“属于”、“位于”等,也可以是抽象的,如“影响”、“导致”等。
4.2.2关系的分类
关系的分类通常基于它们所表达的语义内容,例如:
-
因果关系:揭示一个实体如何影响或导致另一个实体的变化。
-
从属关系:描述实体间的隶属或所有关系,如公司与员工的关系。
-
空间关系:表示实体在空间上的相对位置或分布。
-
时间关系:涉及实体在时间上的先后顺序或持续期。
4.2.3关系抽取技术
关系抽取是指从文本等数据源中自动识别和分类实体间的关系。这一过程通常涉及以下步骤:
1.实体识别
首先,需要从文本中识别出相关的实体。
2. 关系候选生成
生成可能的实体对,作为关系识别的候选项。
3. 关系分类
- 对于每对实体,确定它们之间是否存在某种特定的关系,并对这种关系进行分类。
- 关系抽取的技术通常基于规则、机器学习或深度学习方法。规则基方法依赖于预定义的模式和词汇,而机器学习和深度学习方法则通过训练数据自动学习识别关系的模式。
- 深度学习,尤其是基于BERT等预训练语言模型的方法,在关系抽取方面显示出优异的性能。这些模型能够理解文本的深层语义和上下文信息,从而更准确地识别复杂的关系。
4.2.3关系在知识图谱中的重要性
关系在知识图谱中扮演着至关重要的角色,它不仅增加了实体间的连接,而且提供了丰富的语义信息。例如,在医疗知识图谱中,通过分析症状与疾病之间的关系,可以帮助医生更快地诊断病情。在金融领域,分析公司之间的合作或竞争关系对于市场分析和风险评估至关重要。
此外,关系的准确识别和表达对于提升知识图谱的查询效率和精确度也是必不可少的。在智能搜索、推荐系统等应用中,深入理解实体间的关系能够提供更精准的搜索结果和推荐内容。
4.3属性(Attribute)
4.3.1属性定义
- 属性是对实体的描述和补充,提供了关于实体的详细信息。属性的准确识别和整合对于丰富知识图谱的内容,提高其精确度和可用性至关重要。
- 在知识图谱中,属性(Attribute)是对实体特性的描述,它为实体提供详细的信息,增强了实体的语义理解。属性的准确识别和表达是知识图谱构建的关键环节之一,对于提升知识图谱的质量和应用效果具有重要意义。
- 属性是附加在实体上的信息片段,用于描述实体的特定特征。例如,对于人物实体,其属性可能包括年龄、国籍、职业等;对于地点实体,属性可能包括位置、人口、面积等。在知识图谱中,属性不仅提供了实体的详细信息,还有助于区分具有相似特征的不同实体。
- 在数据科学领域,属性分析帮助数据分析师更深入地了解数据特征,从而进行更有效的数据处理和分析。例如,在市场分析中,通过分析产品的属性(如价格、品牌、功能等),可以更好地理解市场趋势和消费者偏好。
- 在人工智能应用中,属性的利用可以极大地提高模型的性能。例如,在语义搜索中,通过分析和匹配用户查询的关键属性,搜索引擎能提供更相关和精准的搜索结果。
4.3.2属性种类
属性通常可以分为以下几类:
1. 描述性属性
描述性属性提供了关于实体的基本信息,例如名称、定义、外观等。
2. 数量性属性
数量性属性涉及数值信息,如年龄、价格、尺寸等。
3. 时间性属性
时间性属性描述了与时间相关的信息,如日期、历史事件、有效期等。
4. 空间性属性
空间性属性涉及地理和空间信息,如位置坐标、地理边界等。
4.3.3属性抽取技术
属性抽取是指从文本等非结构化数据源中识别出与实体相关的属性信息。
4.3.4技术实战:基于机器学习的属性抽取
属性抽取通常涉及自然语言处理和文本挖掘技术。传统的方法依赖于规则和模式匹配,而机器学习方法则可以通过学习数据中的模式来自动识别属性。
深度学习,尤其是基于RNN(递归神经网络)和BERT等预训练模型的方法,在属性抽取中表现优异。这些模型能够捕捉上下文信息,从而更准确地识别和分类属性。
4.3.5属性在知识图谱中的重要性
属性在知识图谱中的重要性体现在以下几个方面:
1. 丰富实体信息
属性为实体提供了详细和全面的描述,帮助用户更好地理解实体。
2. 提高检索效率
属性可以作为检索和查询的关键词,提高知识图谱的检索效率。
3. 促进关系理解
属性有助于理解实体间的关系,尤其是在复杂的关系抽取和推理中。
4. 支持数据分析
在数据分析和挖掘中,属性是重要的特征,可以用于模式识别、分类、聚类等任务。
4.4知识图谱构建三要素:实体、关系与属性总结
什么是实体 ?
也叫“对象”“节点”,一般指人、物的名词性代称
什么是关系 ?
指两个实体之间的的关联关系,如:从属关系、包含关系、因果关系等
什么是属性 ?
指描述实体其他特征维度的内容,是对实体的详细描述
什么是属性值 ?
指属性的具体内容,如描述桌子,桌子是实体,长度是属性,长32cm是属性值