poj 3176 -- Cow Bowling
Cow Bowling
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 13931 | Accepted: 9230 |
Description
The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this:
Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.
7Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame.
3 8
8 1 0
2 7 4 4
4 5 2 6 5
Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.
Input
Line 1: A single integer, N
Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.
Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.
Output
Line 1: The largest sum achievable using the traversal rules
Sample Input
5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
Sample Output
30
题目链接:Cow Bowling
思路:简单dp,白皮书入门dp。
1 /*====================================================================== 2 * Author : kevin 3 * Filename : CowBowing.cpp 4 * Creat time : 2014-09-18 10:59 5 * Description : 6 ========================================================================*/ 7 #include <iostream> 8 #include <algorithm> 9 #include <cstdio> 10 #include <cstring> 11 #include <queue> 12 #include <cmath> 13 #define clr(a,b) memset(a,b,sizeof(a)) 14 #define M 400 15 using namespace std; 16 int s[M][M],dp[M][M]; 17 int main(int argc,char *argv[]) 18 { 19 int n; 20 while(scanf("%d",&n)!=EOF){ 21 clr(dp,0); 22 clr(s,0); 23 for(int i = 1; i <= n; i++){ 24 for(int j = 1; j <= i; j++){ 25 scanf("%d",&s[i][j]); 26 } 27 } 28 for(int i = 1; i <= n; i++){ 29 dp[n][i] = s[n][i]; 30 } 31 for(int i = n-1; i >= 1; i--){ 32 for(int j = 1; j <= i; j++){ 33 dp[i][j] = max(s[i][j] + dp[i+1][j],s[i][j] + dp[i+1][j+1]); 34 } 35 } 36 printf("%d\n",dp[1][1]); 37 } 38 return 0; 39 }
Do one thing , and do it well !