poj 3278 -- Catch That Cow
Catch That Cow
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 46279 | Accepted: 14508 |
Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a pointK (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
思路:广搜的水题。
1 /*====================================================================== 2 * Author : kevin 3 * Filename : CatchThatCow.cpp 4 * Creat time : 2014-08-03 10:06 5 * Description : 6 ========================================================================*/ 7 #include <iostream> 8 #include <algorithm> 9 #include <cstdio> 10 #include <cstring> 11 #include <queue> 12 #include <cmath> 13 #define clr(a,b) memset(a,b,sizeof(a)) 14 #define M 200005 15 using namespace std; 16 int vis[M],cnt[M]; 17 18 void BFS(int m,int n) 19 { 20 queue<int>que; 21 vis[m]=1; 22 que.push(m); 23 while(que.front()!=n && !que.empty()){ 24 int t=que.front(); 25 que.pop(); 26 if(!vis[t-1] && (t-1>=0 && t-1<M)){ 27 que.push(t-1); 28 cnt[t-1]=cnt[t]+1; 29 vis[t-1]=1; 30 } 31 if(!vis[t+1] && (t+1>=0 && t+1<M)){ 32 que.push(t+1); 33 cnt[t+1]=cnt[t]+1; 34 vis[t+1]=1; 35 } 36 if(!vis[t*2] && (t*2>=0 && t*2<M)){ 37 que.push(t*2); 38 cnt[t*2]=cnt[t]+1; 39 vis[t*2]=1; 40 } 41 } 42 } 43 44 int main() 45 { 46 int n,k; 47 while(scanf("%d%d",&n,&k)!=EOF){ 48 clr(vis,0); 49 clr(cnt,0); 50 BFS(n,k); 51 printf("%d\n",cnt[k]); 52 } 53 return 0; 54 }
Do one thing , and do it well !