最小公倍数之和 题解

转化下题面。

\[\sum_{i=1}^n \sum_{j=1}^n lcm(i,j) * cnt_i * cnt_j \]

其中, \(n\)\(cnt_k (1 \leq k \leq n)\) 已事先给出规模均为 \(5e4\)


\[\sum_{i=1}^n \sum_{j=1}^n lcm(i,j) * cnt_i * cnt_j \]

\[= \sum_{i=1}^n \sum_{j=1}^n \frac{i*j}{gcd(i,j)} * cnt_i * cnt_j \]

\[= \sum_{d=1}^n \sum_{i=1}^n \sum_{j=1}^n [gcd(i,j)==d] * \frac{i*j}{d} * cnt_i * cnt_j \]

\[= \sum_{d=1}^n \sum_{i=1}^{\lfloor \frac{n}d \rfloor} \sum_{j=1}^{\lfloor \frac{n}d \rfloor} [gcd(i,j)==1] * i * j * d * cnt_{id} * cnt_{jd} \]

\[= \sum_{d=1}^n \sum_{i=1}^{\lfloor \frac{n}d \rfloor} \sum_{j=1}^{\lfloor \frac{n}d \rfloor} \sum_{s|gcd(i,j)} \mu(s) * i * j * d * cnt_{id} * cnt_{jd} \]

\[= \sum_{d=1}^n d*\sum_{i=1}^{\lfloor \frac{n}d \rfloor} \sum_{j=1}^{\lfloor \frac{n}d \rfloor} \sum_{s|gcd(i,j)} \mu(s) * i * j * cnt_{id} * cnt_{jd} \]

\[= \sum_{d=1}^n d* \sum_{s=1}^{\lfloor \frac{n}d \rfloor} \mu(s) \sum_{i=1}^{\lfloor \frac{n}{sd} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{sd} \rfloor} s^2 * i * j * cnt_{ids} * cnt_{jds} \]

\[= \sum_{d=1}^n d* \sum_{s=1}^{\lfloor \frac{n}d \rfloor} \mu(s) * s^2 \sum_{i=1}^{\lfloor \frac{n}{sd} \rfloor} \sum_{j=1}^{\lfloor \frac{n}{sd} \rfloor} i * j * cnt_{ids} * cnt_{jds} \]

\[= \sum_{d=1}^n d* \sum_{s=1}^{\lfloor \frac{n}d \rfloor} \mu(s) * s^2 \sum_{i=1}^{\lfloor \frac{n}{sd} \rfloor} i*cnt_{ids} \sum_{j=1}^{\lfloor \frac{n}{sd} \rfloor} j * cnt_{jds} \]

\[= \sum_{d=1}^n d* \sum_{s=1}^{\lfloor \frac{n}d \rfloor} \mu(s) * s^2 \Big( \sum_{i=1}^{\lfloor \frac{n}{sd} \rfloor} i*cnt_{ids} \Big)^2 \]

\[= \sum_{sd=1}^n sd \sum_{s|sd} \big( \mu(s) * s \big) \Big( \sum_{i=1}^{\lfloor \frac{n}{sd} \rfloor} i*cnt_{ids} \Big)^2 \]

\(sd\) 换成 一个漂亮点的数 \(T\) , 最后的式子就是

\[\sum_{T=1}^n T *\big( \sum_{s|T} \mu(s) * s \big) * \Big( \sum_{i=1}^{\lfloor \frac{n}{T} \rfloor} i*cnt_{iT} \Big)^2 \]

中间的括号可以 \(O(n \log n)\) 预处理, 后面的括号暴力算的总复杂度是个调和级数, 复杂度也是 \(O(n \log n)\)

luogu数据AC代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 50005;
#define li long long

int prime[maxn], v[maxn], mu[maxn], m;
li f[maxn];
void euler(int n) {
	mu[1] = 1;
	for(int i=2; i<=n; ++i) {
		if(!v[i]) {
			v[prime[++m] = i] = i;
			mu[i] = -1;
		}
		for(int j=1; j<=m; ++j) {
			if(prime[j] > n/i || prime[j] > v[i]) break;
			v[prime[j] * i] = prime[j];
			mu[prime[j] * i] = mu[i] * (i%prime[j] ? -1 : 0);
		}
	}
	for(int i=1; i<=n; ++i)
		for(int j=1; j<=n/i; ++j)
			f[i*j] += i * mu[i];
}

int n, a[maxn], c[maxn];
int N;
int main()
{
	scanf("%d", &n);
	for(int i=1;i<=n;++i) {
		scanf("%d", &a[i]);
		++c[a[i]];
		N = max(N, a[i]);
	}
	euler(N);
	li ans = 0ll;
	for(int T=1; T<=N; ++T) {
		li nowans = 0ll;
		for(int i=1; i<=N/T; ++i) nowans += i*c[i*T];
		nowans = nowans * nowans;
		ans += T * f[T] * nowans;
	}
	cout << ans;
	return 0;
 } 
posted @ 2020-04-23 21:12  xwmwr  阅读(182)  评论(0编辑  收藏  举报