HDU 6987 - Cycle Binary(找性质+杜教筛)

题面传送门

首先 mol 一发现场 AC 的 csy 神仙

为什么这题现场这么多人过啊啊啊啊啊啊

继续搬运官方题解(

首先对于题目中的 \(k,P\)​,我们有若存在字符串 \(k,P,P’\)​ 满足 \(S=kP+P’\)​,且 \(P’\)​ 为 \(P\)​ 前缀,那么称 \(P\)​ 为 \(S\)​ 的一个周期,显然 \(k\)​ 最大等价于 \(|P|\)​ 最小,也就是说我们要找到对于每个 \(|P|\)​,最短周期长度为 \(|P|\)​ 的字符串个数,那么显然对于长度为 \(x\)​​ 的周期,如果一个字符串最短周期长度为 \(x\)​,那么其对应的 \(k=\lfloor\dfrac{|S|}{n}\rfloor\)​,也就是说,假设 \(f(i)\)​ 表示最短周期长度为 \(i\) 的字符串个数,那么

\[ans=\sum\limits_{i=1}^nf(i)\lfloor\dfrac{n}{i}\rfloor \]

那么怎么求 \(f(i)\) 呢?我们不妨做以下猜想:

Observation \(-1\). 一个串 \(S\) 最小周期长度为 \(x\),当且仅当长度为 \(x\) 的前缀是 \(S\) 的周期且不存在某个 \(y\mid x\),满足长度为 \(y\) 的前缀是 \(S\) 的周期

为什么是 \(-1\) 呢?因为显然这个结论是错的,反例随便举,譬如 \(S='\text{abaa}',x=3\),u1s1 我现场开场 30min 就在肝这道题并猜了这个结论,然鹅意识到这个结论是错误的,并且注意到现场 30min 没人通过这道题,感觉不对劲就放弃了(

不过注意到违背这个结论的都是 \(x\) 比较大的情况,对于 \(x\) 比较小的情况这个结论是不是就对了呢?

事实果真如此。

Observation. 一个串 \(S\)​ 最小周期长度为 \(x(x\le\lfloor\dfrac{n}{2}\rfloor)\)​,当且仅当长度为 \(x\)​ 的前缀是 \(S\)​ 的周期且不存在某个 \(y\mid x\)​,满足长度为 \(y\)​ 的前缀是 \(S\)​ 的周期

证明:首先关于周期我们有一个周期引理(Periodicity Lemma),大概说的是如果一个字符串存在两个周期长度分别为 \(x,y\),且 \(x+y\le n+\gcd(x,y)\),那么长度为 \(\gcd(x,y)\) 的前缀也是 \(S\)​ 的周期。

这样就可以反证法了,假设存在一个 \(y<x\) 满足 \(y\nmid x\) 且长度为 \(y\) 的前缀也是 \(S\)​ 的周期,那么由于 \(x\le\lfloor\dfrac{n}{2}\rfloor\),必然有 \(x+y\le n<n+\gcd(x,y)\),套用 Periodicity Lemma 可得 \(\gcd(x,y)\) 也是 \(S\) 的周期,而 \(\gcd(x,y)\mid x\),与长度为 \(x\) 的前缀为 \(S\) 的最小周期矛盾,因此假设不成立。

注意到对于 \(x>\lfloor\dfrac{n}{2}\rfloor\),必然有 \(\lfloor\dfrac{n}{x}\rfloor=1\),因此

\[\begin{aligned} res&=\sum\limits_{i=1}^n\lfloor\dfrac{n}{i}\rfloor f(i)\\ &=\sum\limits_{i=1}^{n/2}\lfloor\dfrac{n}{i}\rfloor f(i)+2^n-\sum\limits_{i=1}^{n/2}f(i)\\ &=2^n-\sum\limits_{i=1}^{n/2}(\lfloor\dfrac{n}{i}\rfloor-1)f(i) \end{aligned} \]

而对于 \(x\le\lfloor\dfrac{n}{2}\rfloor\),根据上面的性质有

\[f(x)=2^x-\sum\limits_{y\mid x,y\ne x}f(y) \]

即枚举 \(S\) 的前 \(x\) 位是什么,这样即可确定整个 \(S\),同时需扣掉最小周期 \(<x\) 且是 \(x\) 的约数的串的个数。

这看起来和数论有点关系了,移个项:

\[f(x)+\sum\limits_{y\mid x,y\ne x}f(y)=2^x \]

也即

\[\sum\limits_{y\mid x}f(y)=2^x \]

\[f*I=2^x \]

于是上面那个求答案的式子就可以整除分块+杜教筛了。时间复杂度 \(Tn^{2/3}\)

const int MAXV=5e6;
const int MOD=998244353;
int qpow(int x,int e){
	int ret=1;
	for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
	return ret;
}
int f[MAXV+5];
void init(){
	for(int i=1,pw=2;i<=MAXV;i++,(pw<<=1)%=MOD) f[i]=pw;
	for(int i=1;i<=MAXV;i++) for(int j=i<<1;j<=MAXV;j+=i) f[j]=(f[j]-f[i]+MOD)%MOD;
	for(int i=1;i<=MAXV;i++) f[i]=(f[i-1]+f[i])%MOD;
}
unordered_map<int,int> sm;
int calc(int x){
	if(x<=MAXV) return f[x];
	if(sm.count(x)) return sm[x];int res=(qpow(2,x+1)-2+MOD)%MOD;
	for(int l=2,r;l<=x;l=r+1){
		r=x/(x/l);res=(res-1ll*(r-l+1)*calc(x/l)%MOD+MOD)%MOD;
	} return res;
}
int main(){
	init();int qu;scanf("%d",&qu);
	while(qu--){
		int n;scanf("%d",&n);int res=qpow(2,n);
		for(int l=1,r;l<=(n>>1);l=r+1){
			r=min(n/(n/l),n>>1);
			res=(res+1ll*(calc(r)-calc(l-1)+MOD)*(n/l-1))%MOD;
		} printf("%d\n",res);
	}
	return 0;
}
posted @ 2021-08-12 23:12  tzc_wk  阅读(78)  评论(0编辑  收藏  举报