Codeforces Round #691 (Div. 2) 题解

  • A

不多说了吧,直接扫一遍求出 \(r_i>b_i\) 的个数和 \(r_i<b_i\) 的个数

  • B

稍微打个表找个规律就可以发现,当 \(n\) 为奇数的时候,答案为 \(\dfrac{(n+1)(n+3)}{2}\),当 \(n\) 为偶数的时候,答案为 \((\dfrac{n}{2}+1)^2\)

  • C

考虑 \(\operatorname{gcd}\) 的另一种计算方式,\(\operatorname{gcd}(a_1,a_2,\dots,a_n)=\operatorname{gcd}(a_1,a_2-a_1,a_3-a_2,\dots,a_n-a_{n-1})\),那么就有 \(\operatorname{gcd}(a_1+x,a_2+x,\dots,a_n+x)=\operatorname{gcd}(a_1+x,a_2-a_1,a_3-a_2,\dots,a_n-a_{n-1})\),预处理出 \(G=\operatorname{gcd}(a_2-a_1,a_3-a_2,\dots,a_n-a_{n-1})\),然后对于每组询问,输出 \(\operatorname{gcd}(G,a_1+b_j)\) 即可。

  • D

首先要明确的一点是,我们不会出现回倒的情况,就是从杯子 \(x\) 倒到一个杯子 \(y\),再倒到一个杯子 \(z\),因为这样还不如 \(x\) 直接倒到 \(z\)\(y\) 直接倒到 \(z\)
于是本题变为选择 \(k\) 个杯子 \(i_1,i_2,\dots,i_k\),将所有其它杯子里的水倒到这 \(k\) 个杯子里,这样总共能容纳 \(\min(a_{i_1}+a_{i_2}+\dots+a_{i_k},b_{i_1}+b_{i_2}+\dots+b_{i_k}+\sum\limits_{i \text{没被选择}}\frac{b_i}{2})\) 的水。
然后就可以 \(dp\) 了,\(dp_{i,j,k}\) 表示在前 \(i\) 个杯子里选择了 \(j\) 个杯子,这 \(j\) 个杯子的 \(a_i\) 的和为 \(k\),最多能容纳多少水。时空复杂度均 \(n^4\)

  • E

现场被这题区分了/kk
首先要明确的一点是 LRUD 和 IC 肯定不是同一类的。如果 \(s\) 中只包含 LRUD,那此题就变得异常简单。直接维护两个标记 \(x,y\) 表示行/列分别位移了多少就可以了。
重头戏在于 I 和 C。首先我们要理解 I 和 C 的本质。
对于排列 \(p_1,p_2,\dots,p_n\),我们如果把每个元素看作一个二维坐标 \((i,p_i)\),那么这个排列的逆元相当于 \((p_i,i)\),即交换两维坐标的值。
I 和 C 也是如此。如果我们把这个矩阵看作 \(n^2\) 个三维空间里的点 \((i,j,a_{i,j})\),那么 I 操作其实就是交换 x,z 坐标的值,C 操作其实是交换 y,z 的值。
这样一来这题就很好做了,对于 LRUD,记录每一维的增量,对于 IC,记录当前每一维是原来的第几维,这样每个操作都可以 \(\mathcal O(1)\) 解决了。
看到没?什么超纲的算法都没有。所以啊,菜是原罪/kk

  • F

现场试图看这道题结果什么思路都没有。
考虑记 \(0\)\(-1\)\(1\)\(+1\),这样可以得到一个长度为 \(|s|\) 的由 \(+1\)\(-1\) 组成的序列。
然后对这个序列做一遍前缀和,并连一条 \(s_i\to s_{i+1}\) 的有向边,这样可以得到一张图,一个欧拉回路就对应着一个字符串。
考虑题目中那个奇怪的操作的本质。假设我们对区间 \([l,r]\) 进行操作。既然 \([l,r]\) 要求 01 个数相等,那么肯定有 \(s_{l-1}=s_r\),而翻转+反转实际上等于将这些边反向。所以实际上该操作等价于选择一个环然后将环上所有边反向。
这里需要观察出一个性质:就是操作前后,原图所包含的边集 \(E\) 是不变的。因为每次操作是将边反向,所以如果把有向边改为无向边,那么边集显然是不变的。又由于我们操作的是一个环,所以对于一条边 \((x,y)\)\(x\to y\)\(y\to x\) 的次数是一样的,所以 \(x\to y\)\(y\to x\) 在操作前后出现次数都是相同的。
有了这个性质,我们还需观察出另一个性质:原图任意一条欧拉回路(起点和终点必须与初始相同)代表的都可以由原字符串进行一系列操作得到:首先我们假设原路径与当前路径在 \(x\) 位置出现了分歧,一个走了 \(x\to x+1\) 的边,一个走了 \(x\to x-1\) 的边。而这两个路径终究还是要走 \(x\to x-1\)\(x\to x+1\) 的边的,所以肯定有一条边 \(x+1\to x\),也有一条边 \(x-1\to x\),此时我们选择 \(x\to x-1\to x\to x+1\to x\),并将其翻转,看看会发生什么。此时我们惊奇地发现,原来先走 \(x\to x-1\) 的路径改走 \(x\to x+1\) 了!以此类推,最后两个路径一定会重合。
于是此题就变为:求字典序最小的欧拉序。直接贪心就可以了。
看到没?什么超纲的算法都没有。所以啊,菜是原罪/kk

看到没?什么超纲的算法都没有。所以啊,菜是原罪/kk

posted @ 2020-12-20 16:16  tzc_wk  阅读(164)  评论(1编辑  收藏  举报