目录
本周真像是要量产小文章啊……
今天接触了一下LLC谐振电路。LLC谐振电路中,主要分为半桥谐振和全桥谐振。而副边分为不可控整流和同步整流。全桥是指H桥,具有4个可控开关。半桥是只有H桥的一般,只有2个可控开关。同步整流主要是指,都用内置二极管的MOS管替代二极管。二极管普遍具有0.7V或者0.3V的标准导通压降,电流增大,导通压降也会随着增大。而MOS管,导通电阻是毫欧等级的,导通压降等于电流乘以导通电阻,很小。用同步整流的方式,可降低二极管损耗、提高电源转换效率。
1、半桥LLC谐振电路
半桥LLC谐振电路拓扑结构如下:
电路中,可控MOS管Q1和Q2串联,组成半桥。每个MOS管,都内置有方向并联二极管、同时在漏极和源极有一个等效电容(其实高频特性下,MOS管的每个引脚之间都有一个等效电容)。电容Cr和电感Lr、和变压器T1的原边电感Lm构成了一个LLC谐振电路。变压器T1的副边,经过二极管D1和二极管D2,整流后得到为负载供电。电容Cout主要起滤波作用。
谐振原理:
可得到
绘制出传递函数的波特图。
MATLAB中运行:
- Lr = 20e-6;
- Lm=20e-6;
- Cr=0.1e-6;
- y1= tf([Lm*Cr,0,0],[Cr*(Lr+Lm),0,1])
- [MAG, PHASE,W] = bode(y1);
- bode(y1)
- grid on
可得到下面的波特图:
可见在谐振频率点处,LLC的增益达到了137dB。只有在谐振点附近,增益为正数。离谐振点较远的频率都有抑制作用。因次,控制半桥的可控管,LLC电路工作在谐振点,电路输出最有最大电压;若控制半桥的可控硅,让LLC电路工作频率远离谐振点,可让LLC输出的电压降低。
1.1 半桥LLC谐振电路的工作模态
设、、谐振的频率为,则
设和的谐振频率为,则
用PWM波控制LLC中的半桥,通常使用占空比为50%的PWM波。采用改变频率的方式,控制LLC的输出电压。
设开关频率为。LLC电路分为三种情况。第一种是。第二种是,第三种是。
以为例,介绍本电路的工作模态(找了几篇参考论文,都没把各种工作频率下的工作模态介绍完全)。
工作模态1 |
工作模态2 |
工作模态3 |
工作模态4 |
工作模态5 |
1.2 电路仿真
在PSIM软件中对电路进行了仿真。
仿真步长Time step = 1e-7;仿真总时间total time = 0.1;
LLC中,Lr=20uH;Lm=20uH;Cr=0.1uF;负载侧滤波电容Cout=4700uF;负载电阻为120欧姆。
闭环控制比较难仿真,逻辑较复杂因此,先做开环控制的仿真。通过自行改变三角波的频率,观察输出电压的变化。
Fs=80K:
Fs=100KHz:
Fs = 112539Hz:
Fs=130KHz:
Fs=160KHz
仿真结果显示,三角载波由80KHz下降到160K,输出电压也呈现下降趋势。
2、全桥LLC
全桥LLC的拓扑结构如下:
和上面半桥LLC的区别是,谐振电路的输入端是一个H桥全桥电路。
2.1 全桥LLC的工作模态
全桥LLC电路同样分为三种情况。第一个频段是。第二个频段是,第三个频段是。详见参考文献[1]。
2.1.1 第一个频段:
主要器件的信号波形如下:
工作模态1:t0-t1 | 工作模态5:t4-t5 |
工作模态2:t1-t2 | 工作模态6:t5-t6 |
工作模态3:t2-t3 | 工作模态7:t6-t7 |
工作模态4:t3-t4 | 工作模态8:t7-t8 |
2.1.2 第三个频段:
主要器件的信号波形如下:
工作模态1:t0-t1 | 工作模态4:t3-t4 |
工作模态2:t1-t2 | 工作模态5:t4-t5 |
工作模态3:t2-t3 | 工作模态6:t5-t6 |
时在这里不介绍了。
2.2 仿真
同样,仿真软件使用PSIM9.0
开关频率80KHz:
开关频率100KHz:
开关频率120KHz:
开关频率170KHz:
开关频率200KHz:
开关频率230KHz:
仿真结果显示,三角载波由80KHz下降到250K,输出电压也呈现下降趋势。
3. 半桥LLC+同步整流
拓扑如下:
在参考文献[2]中,设计的服务器电源的LLC拓扑就是本拓扑。全桥拓扑中,变压器的原边电路中,电容C2和二极管D2都是MOS管Q2所内置的;电容C4和二极管D4都是MOS管Q4所内置的。
本拓扑中的变压器原边中,使用了两个谐振电容和两个二极管,分别替代全桥LLC中的MOS管Q2和MOS管Q4。
同时,本拓扑中,变压器的副边,比传统的LLC拓扑,移动了一下元器件的位置。并采用同步整流以降低二极管的开关损耗。
参考文献[2]中介绍大的是一款效率符合Titanium(钛金级)标准的电源。但是没具体介绍单片机实现的方式。另外找到了一款符合Platinum(铂金级)标准的电源请见参考文献[3]。主要是后者这款,具有部分数字化逻辑框图。
电路的硬件连接方式如下图:
所需要采集的信号量为:1、谐振电感的电流;2、负载电压;3、负载电流;4、变压器中心抽头的电压。
3.1 仿真
先做开环仿真验证系统是否可行:
仿真步长Time step = 1e-7;仿真总时间total time = 0.1;
LLC中,Lr=20uH;Lm=20uH;两个都是Cr=0.1uF;负载侧PI型滤波器中,两个滤波电容C=470uF,滤波电感20uH;负载电阻为120欧姆。
输出电压:
参考文献1:LLC谐振变换器在电力电子变压器中的应用研究_陆玉
参考资料2:《Infineon-ApplicationNote_EvaluationBoard_EVAL_1K6W_PSU_G7_DD-AN-v01_01-EN.pdf》跳转页面
参考资料3:《Infineon-Application_note_evaluation_board_EVAL_800W_PSU_3P_P7-AN-v01_00-EN.pdf》跳转页面