HDU - 3068 最长回文(manacher算法)
题意:给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度.
分析:
manacher算法:
1、将字符串中每个字符的两边都插入一个特殊字符。(此操作的目的是,将字符串长度统一变成奇数,道理很容易想---奇数+偶数=奇数or偶数+奇数=奇数)
eg:abba--->#a#b#b#a#
此外,为了便于处理边界,可在字符串开始处再加另外一个特殊字符。
eg:#a#b#b#a#--->$#a#b#b#a#
2、数组 P[i] 来记录以字符S[i]为中心的最长回文子串向左/右扩张的长度,显然,P[i]-1正好是原字符串中以字符S[i]为中心的回文串长度。
3、计算P[i]。
id---已知的 右边界最大 的回文子串ss的中心
ma---id+P[id],子串ss的右边界
j--- i 关于 id 的对称点,因此j=id * 2 - i
(1)如果ma > i,则
(i)若p[j] < ma - i, 则p[i] = p[j]。
原因:因为以id为中心是个大的回文串,若已知 在位置id左侧的回文串内 有 某点j ,且以点j为中心有个长度为p[j](p[j]是小于ma-i的)的回文串,那么 以点i(i是j关于id的对称点,i在id右侧且因为对称,所以一定在回文串内)为中心一定有一个回文串,且该回文串长度为p[j]。
(ii)若p[j] >= ma - i, 则p[i] = ma - i。
原因:因为以id为中心的大的回文串右边界只延伸到ma,根据对称性,虽然p[j]大于ma-i,但是,对于以点i为中心的回文串,只能知道右边界为ma-i的范围内一定是个回文串,再往右情况未知,只能左右延伸依次判断。
(2)如果ma <= i,只能左右延伸依次判断。
#include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define lowbit(x) (x & (-x)) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 110000 + 10; const int MAXT = 10000 + 10; using namespace std; char s[MAXN]; int p[MAXN << 1]; char t[MAXN << 1]; int len; int cnt; void init(){ memset(t, 0, sizeof t); cnt = 0; t[cnt++] = '$'; for(int i = 0; i < len; ++i){ t[cnt++] = '#'; t[cnt++] = s[i]; } t[cnt++] = '#'; } int manacher(){ int ma = 0, id = 0, ans = 1; for(int i = 1; i < cnt; ++i){ p[i] = ma > i ? min(p[id * 2 - i], ma - i) : 1; while(t[i + p[i]] == t[i - p[i]]) ++p[i]; if(i + p[i] > ma){ ma = i + p[i]; id = i; } ans = max(ans, p[i]); } return ans - 1; } int main(){ while(scanf("%s", s) == 1){ len = strlen(s); init(); printf("%d\n", manacher()); } return 0; }