HDU 2553 N皇后问题
题意:在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。对于给定的N,求出有多少种合法的放置方法。
分析:
1、数组,表示坐标范围的那一维至少要开到2N,原因是,副对角线通过相加判断是否在同一对角线,横纵坐标的范围会达到2N
2、因为N<=10,所以提前把1到10的结果计算后存起来,否则超时
#include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define Min(a, b) a < b ? a : b #define Max(a, b) a < b ? b : a typedef long long ll; typedef unsigned long long llu; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const ll LL_INF = 0x3f3f3f3f3f3f3f3f; const ll LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1}; const int dc[] = {-1, 1, 0, 0}; const double pi = acos(-1.0); const double eps = 1e-8; const int MOD = 1e9 + 7; const int MAXN = 2000 + 10; const int MAXT = 10000 + 10; using namespace std; int cnt, n; int vis[30][3]; int ans[20]; void dfs(int cur, int n){ if(cur == n){ ++cnt; } for(int i = 0; i < n; ++i){//枚举列 if(!vis[i][0] && !vis[cur + i][1] && !vis[cur - i + n][2]){//列、主对角线、副对角线 vis[i][0] = vis[cur + i][1] = vis[cur - i + n][2] = 1; dfs(cur + 1, n); vis[i][0] = vis[cur + i][1] = vis[cur - i + n][2] = 0; } } } void init(){ for(int i = 1; i <= 10; ++i){ memset(vis, 0, sizeof vis); cnt = 0; dfs(0, i);//按行放置 ans[i] = cnt; } } int main(){ init(); while(scanf("%d", &n) == 1 && n){ printf("%d\n", ans[n]); } return 0; }