题解 Luogu P5434: 有标号荒漠计数

妈妈我终于会这道题了!


\(n\)个点的有根仙人掌个数的指数型生成函数(EGF)为\(F(x)\), 令\(f_i = [x^n]F(x)\)

对于\(f_i\), 我们考虑钦点\(1\)号点为根, 然后考虑与\(1\)相邻的是什么

  1. \(1\)不在环上: 对于这种情况, 我们可以发现与它相邻的还是一颗仙人掌, 于是它的生成函数还是\(F(x)\)

  2. \(1\)不在环上: 对于这种情况, 我们考虑环的大小\(i\), 那么去除点\(1\), 它的生成函数就是\(F^i(x)\), 但是考虑到对称的情况不可取, 实际上它的生成函数是\(\frac{F^i(x)}{2}\)

由于点边随意排列均可, 于是有贡献为\(\exp(F(x) + \frac{1}{2}\sum\limits_{i \geq 2}F^i(x))\)

考虑上根, 应该有

\([x^n]F(x) = [x^{n-1}](\exp(F(x)+\frac{1}{2}\sum\limits_{i \geq 2}F^i(x))) \times n\)

于是有

\(F(x) = x\; \exp(F(x) + \frac{1}{2}\sum\limits_{i \geq 2}F^i(x))\)

发现\(\frac{1}{2}\sum\limits_{i \geq 2}F^i(x) = \frac{F^2(x)}{2-2F(x)}\)

\(F(x) = x\; \exp(\frac{2F(x)-F^2(x)}{2-2F(x)})\)

接下来我们考虑直接搞一个牛顿迭代, 设\(G(F(x)) = x\; \exp(\frac{2F(x)-F^2(x)}{2-2F(x)}) - F(x)\)

接下来我们有

\(F_n(x) = F_{n-1}(x) - \frac{G(F_n(x))}{G'(F_n(x))}\)

于是我们爆算得到

\(F_n(x) = F_{n-1}(x) - \frac{2x\; \exp(\frac{2F(x)-F^2(x)}{2-2F(x)}) - 2F(x)}{x(1+\frac{1}{(F(x)-1)^2})\; \exp(\frac{2F(x)-F^2(x)}{2-2F(x)})-2}\)

在算出来\(F(x)\)后, 注意到我们F(x)的定义是有根仙人掌个数的指数型生成函数, 为了将其变成无根的, 我们令\([x^n]F(x) \leftarrow [x^n]F(x) \times \frac{1}{n}\)

接下来我们将其变成荒漠, 这一步我们将\(F(x) \leftarrow \exp(F(x))\)即可, 为什么这么是正确的, 我们考虑将\(\exp(F(x))\)展开, 有

\(\exp(F(x)) = \sum\limits{i \geq 0} \frac{F^i(x)}{i!}\), 考虑组合意义, 有\([x^n]F^i(x)\)的意义为选出\(n\)颗仙人掌并排序得到的, 为了消序除以\(n!\)即可

然后就是一道多项式板子题了qwq!

posted @ 2019-12-25 14:32  tyqtyq~!  阅读(249)  评论(0编辑  收藏  举报