可持久化数据结构

可持久化数据结构

总述

充分利用以前的状态

可持久化Trie树

这是一颗插入了"AFK"的可持久化Trie

接下来插入"KFC",此时新建一个根(因为要可持久化),然后我们来看他该怎么连边

  • 首先,肯定要有"KFC"

  • 其次,还要能访问到以前的节点

然后就可以这么搞:

然后插入"KFK":

所以我们发现一个这样的算法:

ins(u,f) 被定义为一个插入算法

那么对于[a..z]中的字母X,考虑f所连的一条边权为X的边,若其存在,则将root[i]的X指针指向之。特别的,若X是要插入的字符串中正在处理的一位,则不执行以上操作,并将X指针指向一个新的节点,记该节点为t,该字符为m,该边所指向的节点为k

执行完后,递归ins(t,k),把处理到的位置++

这样就好啦qwq

可持久化线段树

先建树,过程同普通线段树,不再赘述

然后假设建出来一颗这样的:

接下来修改v[1] = 3 , 根据推理发现应该是这样的:

继续,v[2]=0,树长这样子:

OK,代码跟可持久化Trie+线段树样的,然后时间复杂度证明如下:

1.一开始树中只有原始的NlogN个节点
2.每次插入会增加一条长度为logN的链

所以总长度为O(NlogN+(N-1)logN)=O((2N-1)logN)=O(NlogN)

posted @ 2019-03-17 11:01  tyqtyq~!  阅读(203)  评论(0编辑  收藏  举报