8.二叉查找树
fatal.h
#include <stdio.h>
#include <stdlib.h>
#define Error(Str) FatalError(Str)
#define FatalError(Str) fprintf(stderr, "%s\n", Str), exit(1)
tree.h
typedef int ElementType;
#ifndef _Tree_H
#define _Tree_H
struct TreeNode;
typedef struct TreeNode *Position;
typedef struct TreeNode *SearchTree;
SearchTree MakeEmpty(SearchTree T);
Position Find(ElementType X, SearchTree T);
Position FindMin(SearchTree T);
Position FindMax(SearchTree T);
SearchTree Insert(ElementType X, SearchTree T);
SearchTree Delete(ElementType X, SearchTree T);
ElementType Retrieve(Position P);
#endif
tree.c
#include "tree.h"
#include <stdlib.h>
#include "fatal.h"
struct TreeNode
{
ElementType Element;
SearchTree Left;
SearchTree Right;
};
SearchTree MakeEmpty(SearchTree T)
{
if (T != NULL)
{
MakeEmpty(T->Left);
MakeEmpty(T->Right);
free(T);
}
return NULL;
}
Position Find(ElementType X, SearchTree T)
{
if (T == NULL)
return NULL;
if (X < T->Element)
return Find(X, T->Left);
else if (X > T->Element)
return Find(X, T->Right);
else
return T;
}
Position FindMin(SearchTree T)
{
if (T == NULL)
return NULL;
else if (T->Left == NULL)
return T;
else
return FindMin(T->Left);
}
Position FindMax(SearchTree T)
{
if (T != NULL)
{
while (T->Right != NULL)
T = T->Right;
}
return T;
}
SearchTree Insert(ElementType X, SearchTree T)
{
if (T == NULL)
{
/* Create and return a one-node tree */
T = malloc(sizeof(struct TreeNode));
if (T == NULL)
FatalError("Out of space!!!");
else
{
T->Element = X;
T->Left = T->Right = NULL;
}
}
else if (X < T->Element)
T->Left = Insert(X, T->Left);
else if (X > T->Element)
T->Right = Insert(X, T->Right);
/* Else X is in the tree already; we'll do nothing */
return T; /* Do not forget this line!! */
}
SearchTree Delete(ElementType X, SearchTree T)
{
Position TmpCell;
if (T == NULL)
Error("Element not found");
else if (X < T->Element) /* Go left */
T->Left = Delete(X, T->Left);
else if (X > T->Element) /* Go right */
T->Right = Delete(X, T->Right);
/* Found element to be deleted */
else if (T->Left && T->Right) /* Two children */
{
/* Replace with smallest in right subtree */
TmpCell = FindMin(T->Right);
T->Element = TmpCell->Element;
T->Right = Delete(T->Element, T->Right);
}
else /* One or zero children */
{
TmpCell = T;
if (T->Left == NULL) /* Also handles 0 children */
T = T->Right;
else if (T->Right == NULL)
T = T->Left;
free(TmpCell);
}
return T;
}
ElementType Retrieve(Position P)
{
return P->Element;
}
testtree.c
#include "tree.h"
#include <stdio.h>
int main()
{
SearchTree T;
Position P;
int i;
int j = 0;
T = MakeEmpty(NULL);
for (i = 0; i < 50; i++, j = (j + 7) % 50)
T = Insert(j, T);
for (i = 0; i < 50; i++)
if ((P = Find(i, T)) == NULL || Retrieve(P) != i)
printf("Error at %d\n", i);
for (i = 0; i < 50; i += 2)
T = Delete(i, T);
for (i = 1; i < 50; i += 2)
if ((P = Find(i, T)) == NULL || Retrieve(P) != i)
printf("Error at %d\n", i);
for (i = 0; i < 50; i += 2)
if ((P = Find(i, T)) != NULL)
printf("Error at %d\n", i);
printf("Min is %d, Max is %d\n", Retrieve(FindMin(T)),
Retrieve(FindMax(T)));
return 0;
}