word2vector的tensorflow代码实现

import collections
import math
import os
import random
import zipfile
import numpy as np
import urllib.request as request
import tensorflow as tf

url = 'http://mattmahoney.net/dc/'

def maybe_download(filename,expected_bytes):
    if not os.path.exists(filename):
        filename,_ = request.urlretrieve(url+filename,filename)
    statinfo = os.stat(filename)
    if statinfo.st_size == expected_bytes:
        print('Found and verified',filename)
    else:
        print(statinfo.st_size)
        raise Exception('Failed to verify' + filename + '.Can you get to it with a browser?')
    return filename

filename = maybe_download('text8.zip',31344016)

def read_data(filename):
    with zipfile.ZipFile(filename) as f:
        data = tf.compat.as_str(f.read(f.namelist()[0])).split()
    return data

words = read_data(filename)
print('Data size',len(words))

vocabulary_size = 50000
def build_dataset(words):
    count = [['UNK',-1]]
    count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
    dictionary = dict(zip(list(zip(*count))[0],range(len(list(zip(*count))[0]))))
    data = list()
    un_count = 0

    for word in words:
        if word in dictionary:
            index = dictionary[word]
        else:
            index = 0
            un_count += 1
        data.append(index)
    count[0][1] = un_count
    reverse_dictionary = dict(zip(dictionary.values(),dictionary.keys()))
    return data,reverse_dictionary,dictionary,count
data,reverse_dictionary,dictionary,count = build_dataset(words)
del words

data_index = 0
def generate_batch(batch_size,num_skips,skip_window):
    global data_index
    assert num_skips <= 2 * skip_window
    assert batch_size % num_skips == 0
    span = 2 * skip_window + 1
    batch = np.ndarray(shape=[batch_size],dtype=np.int32)
    labels = np.ndarray(shape=[batch_size,1],dtype=np.int32)
    buffer = collections.deque(maxlen=span)
    #初始化
    for i in range(span):
        buffer.append(data[data_index])
        data_index = (data_index + 1) % len(data)
    #移动窗口,获取批量数据
    for i in range(batch_size // num_skips):
        target = skip_window
        avoid_target = [skip_window]
        for j in range(num_skips):
            while target in avoid_target:
                target = np.random.randint(0,span - 1)
            avoid_target.append(target)
            batch[i * num_skips + j] = buffer[skip_window]
            labels[i * num_skips + j,0] = buffer[target]

        buffer.append(data[data_index])
        data_index = (data_index + 1) % len(data)
    return batch,labels

batch_size = 128
embedding_size = 128
skip_window = 1
num_skips = 2

valid_size = 16
valid_window = 100
valid_examples = np.random.choice(valid_window,valid_size,replace=False)
num_sampled = 64

with tf.Graph().as_default() as graph:
    train_inputs = tf.placeholder(tf.int32,shape=[batch_size])
    train_labels = tf.placeholder(tf.int32,shape=[batch_size,1])
    valid_dataset = tf.constant(valid_examples,dtype=tf.int32)

    with tf.device('/cpu:0'):
        embeddings = tf.Variable(tf.random_uniform(shape=[vocabulary_size,embedding_size],minval=-1.0,maxval=1.0))
        embed = tf.nn.embedding_lookup(embeddings,train_inputs)
        nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size,embedding_size],stddev=1.0/math.sqrt(embedding_size)))
        nce_bias = tf.Variable(tf.zeros([vocabulary_size]))

        loss = tf.reduce_mean(tf.nn.nce_loss(weights=nce_weights,biases =nce_bias,labels=train_labels,inputs=embed,num_sampled=num_sampled,num_classes=vocabulary_size))
        optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
        norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings),1,keep_dims=True))
        normalized_embeddings = embeddings / norm
        valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings,valid_dataset)
        similarity = tf.matmul(valid_embeddings,normalized_embeddings,transpose_b=True)
    init = tf.global_variables_initializer()

    num_steps = 100001

    with tf.Session(graph=graph) as session:
        init.run()
        print("initialized")

        average_loss = 0.0
        for step in range(num_steps):
            batch_inputs,batch_labels = generate_batch(batch_size,num_skips,skip_window)
            feed_dict = {train_inputs:batch_inputs,train_labels:batch_labels}

            _,loss_val = session.run([optimizer,loss],feed_dict=feed_dict)
            average_loss += loss_val
            if step % 2000 == 0:
                if step > 0:
                    average_loss /= 2000
                print("Average loss at step",step,":",average_loss)
                average_loss = 0
            if step % 10000 == 0:
                sim = similarity.eval()
                for i in range(valid_size):
                    valid_word = reverse_dictionary[valid_examples[i]]
                    top_k = 8
                    nearest = (-sim[i,:]).argsort()[1:top_k+1]
                    log_str = "Nearest to %s:" % valid_word
                    for k in range(top_k):
                        close_word = reverse_dictionary[nearest[k]]
                        log_str = "%s %s," % (log_str,close_word)
                    print(log_str)
        final_embeddings = normalized_embeddings.eval()

 

posted @ 2017-09-13 17:40  佟学强  阅读(1372)  评论(0编辑  收藏  举报