转载:tensorflow保存训练后的模型

训练完一个模型后,为了以后重复使用,通常我们需要对模型的结果进行保存。如果用Tensorflow去实现神经网络,所要保存的就是神经网络中的各项权重值。建议可以使用Saver类保存和加载模型的结果。

1、使用tf.train.Saver.save()方法保存模型

tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None, meta_graph_suffix='meta', write_meta_graph=True, write_state=True)

  • sess: 用于保存变量操作的会话。
  • save_path: String类型,用于指定训练结果的保存路径。
  • global_step: 如果提供的话,这个数字会添加到save_path后面,用于构建checkpoint文件。这个参数有助于我们区分不同训练阶段的结果。

2、使用tf.train.Saver.restore方法价值模型

tf.train.Saver.restore(sess, save_path)

  • sess: 用于加载变量操作的会话。
  • save_path: 同保存模型是用到的的save_path参数。

下面通过一个代码演示这两个函数的使用方法

import tensorflow as tf
import numpy as np

x = tf.placeholder(tf.float32, shape=[None, 1])
y = 4 * x + 4

w = tf.Variable(tf.random_normal([1], -1, 1))
b = tf.Variable(tf.zeros([1]))
y_predict = w * x + b


loss = tf.reduce_mean(tf.square(y - y_predict))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

isTrain = False
train_steps = 100
checkpoint_steps = 50
checkpoint_dir = ''

saver = tf.train.Saver()  # defaults to saving all variables - in this case w and b
x_data = np.reshape(np.random.rand(10).astype(np.float32), (10, 1))

with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    if isTrain:
        for i in xrange(train_steps):
            sess.run(train, feed_dict={x: x_data})
            if (i + 1) % checkpoint_steps == 0:
                saver.save(sess, checkpoint_dir + 'model.ckpt', global_step=i+1)
    else:
        ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)
        else:
            pass
        print(sess.run(w))
        print(sess.run(b))
posted @ 2017-07-26 22:31  佟学强  阅读(4180)  评论(1编辑  收藏  举报