最短路径分词

中文分词有很多方法,比如N-最短路径法,N元语言模型,CRF模型等等。大致可以分为两类:一是机械化的分词,二是用机器学习方法分词。最短路径算法可以划分到第一种。这个算法效果并不是最好的,大体和IK分词打成平手。今天用最简洁语言描述一下:这个算法主要分两步:第一,构造DAG(有向无环图),第二找出最优路径。以下图为例 "有意见分歧”进行分词。首先构造下图中的左边的DAG:节点用0~5来表示,每条边都有起点和终点构成有向图。比如从0节点开始,0~1和0~2构成了两条边,分别代表右图中的有和有意两个词。以此类推,1节点:1~2,1~3。其中,用词在词典中出现的频率来代表边的属性。构建完毕后,我们发现,从0~5有多条路径:0-1-3-5,0-1-2-4-5,0-1-2-3-5,0-1-2-3-4-5,……找出最优路径来,即找出频率之和最大的路径,也就是对应每个起点的边的属性最大。比如,从0开始,0-1的属性最大,然后以1为起点,1-3属性最大,再以3为起点,3-5属性最大。即最优路径:0-1-3-5.有 意见 分歧。下面用Python代码简单示例之:

 1 # encoding=utf-8
 2 
 3 class WordDictModel:
 4     def __init__(self):
 5         self.word_dict = {}
 6         self.stop_words = {}
 7 
 8     def load_data(self, filename):
 9         with open(filename, "r", encoding="utf-8") as fr:
10             for line in fr:
11                 words = line.split(" ")
12                 for word in words:
13                     if word in self.stop_words:
14                         continue
15                     self.word_dict[word] = self.word_dict.get(word,0) + 1
16 
17 class DAGSegger(WordDictModel):
18     def build_dag(self, sentence):
19         dag = {}
20         for start in range(len(sentence)):
21             tmp = []
22             for stop in range(start+1, len(sentence)+1):
23                 fragment = sentence[start:stop]
24                 num = self.word_dict.get(fragment, 0)
25                 if num > 0:
26                     tmp.append((stop, num))
27             dag[start] = tmp
28         return dag
29 
30     def predict(self, sentence):
31         wordList = []
32         Len = len(sentence)
33         route = []
34         dag = self.build_dag(sentence)  # {i: (stop, num)}
35         i = 0
36         while i < len(sentence):
37             end = max(dag[i], key=lambda x: x[1])[0]
38             wordList.append(sentence[i:end])
39             i = end
40         return wordList
41 
42     def test(self):
43         cases = [
44             "有意见分歧"
45         ]
46         for case in cases:
47             result = self.predict(case)
48             for word in result:
49                 print(word)
50             print('')
51 
52 def main():
53     dag_segger = DAGSegger()
54     dag_segger.load_data("words.txt")
55     print(dag_segger.word_dict)
56     dag_segger.test()
57 
58 if __name__ == '__main__':
59     main()

模拟词典:

有 见 分歧 有意 有 有 分 分 见分 见分 分歧 意见 分歧 分歧 见 有意 有 意见 见 有意

从词典中统计出词的频率。这个算法对词典中的词频非常敏感。那么在消除歧义的过程中,比如,乒乓球拍卖完了,有很多路径,很显然,在中文词典中,乒乓球的频率大于乒乓球拍,所以结果是:乒乓球 拍卖 完了。和IK分词的基于非交叉词元链的消除歧义效果一样。这显然是不合理的。只考虑词频,不考虑上下文不可行。2元语法模型一阶马尔科夫链效果要强于这个算法。p(拍卖|乒乓球)的值在统计语料库中会非常低,所以准确度会大于这个算法。

posted @ 2017-05-13 19:44  佟学强  阅读(1121)  评论(0编辑  收藏  举报