数论:约瑟夫环问题(转载自hihocoder)
小Hi:这个问题其实还蛮有名的,它被称为约瑟夫的问题。
最直观的解法是用循环链表模拟报数、淘汰的过程,复杂度是O(NM)。
今天我们来学习两种更高效的算法,一种是递推,另一种也是递推。第一种递推的公式为:
令f[n]表示当有n个候选人时,最后当选者的编号。 f[1] = 0 f[n] = (f[n - 1] + K) mod n
接下来我们用数学归纳法来证明这个递推公式的正确性:
(1) f[1] = 0
显然当只有1个候选人时,该候选人就是当选者,并且他的编号为0。
(2) f[n] = (f[n - 1] + K) mod n
假设我们已经求解出了f[n - 1],并且保证f[n - 1]的值是正确的。
现在先将n个人按照编号进行排序:
0 1 2 3 ... n-1
那么第一次被淘汰的人编号一定是K-1(假设K < n,若K > n则为(K-1) mod n)。将被选中的人标记为"#":
0 1 2 3 ... K-2 # K K+1 K+2 ... n-1
第二轮报数时,起点为K这个候选人。并且只剩下n-1个选手。假如此时把k+1看作0',k+2看作1'...
则对应有:
0 1 2 3 ... K-2 # K K+1 K+2 ... n-1 n-K' n-2' 0' 1' 2' ... n-K-1'
此时在0',1',...,n-2'上再进行一次K报数的选择。而f[n-1]的值已经求得,因此我们可以直接求得当选者的编号s'。
但是,该编号s'是在n-1个候选人报数时的编号,并不等于n个人时的编号,所以我们还需要将s'转换为对应的s。
通过观察,s和s'编号相对偏移了K,又因为是在环中,因此得到s = (s'+K) mod n。
即f[n] = (f[n-1] + k) mod n。
至此递推公式的两个式子我们均证明了其正确性,则对于任意给定的n,我们可以使用该递推式求得f[n],写成伪代码为:
Josephus(N, K): f[1] = 0 For i = 2 .. N f[i] = (f[i - 1] + K) mod i End For Return f[N]
同时由于计算f[i]时,只会用到f[i-1],因此我们还可以将f[]的空间节约,改进后的代码为:
Josephus(N, K): ret = 0 For i = 2 .. N ret = (ret + K) mod i End For Return ret
该算法的时间复杂度为O(N),空间复杂度为O(1)。对于N不是很大的数据来说,可以解决。
小Ho:要是N特别大呢?
小Hi:那么我们就可以用第二种递推,解决的思路仍然和上面相同,而区别在于我们每次减少的N的规模不再是1。
同样用一个例子来说明,初始N=10,K=4:
初始序列:
0 1 2 3 4 5 6 7 8 9
当7号进行过报数之后:
0 1 2 - 4 5 6 - 8 9
在这里一轮报数当中,有两名候选人退出了。而对于任意一个N,K来说,退出的候选人数量为N/K("/"运算表示整除,即带余除法取商)
由于此时起点为8,则等价于:
2 3 4 - 5 6 7 - 0 1
因此我们仍然可以从f[8]的结果来推导出f[10]的结果。
但需要注意的是,此时f[10]的结果并不一定直接等于(f[8] + 8) mod 10。
若f[8]=2,对于原来的序列来说对应了0,(2+8) mod 10 = 0,是对应的;若f[8]=6,则有(6+8) mod 10 = 4,然而实际上应该对应的编号为5。
这是因为在序列(2 3 4 - 5 6 7 - 0 1)中,数字并不是连续的。
因此我们需要根据f[8]的值进行分类讨论。假设f[8]=s,则根据s和N mod K的大小关系有两种情况:
1) s < N mod K : s' = s - N mod K + N 2) s ≥ N mod K : s' = s - N mod K + (s - N mod K) / (K - 1)
此外还有一个问题,由于我们不断的在减小N的规模,最后一定会将N减少到小于K,此时N/K=0。
因此当N小于K时,就只能采用第一种递推的算法来计算了。
最后优化方法的伪代码为:
Josephus(N, K): If (N == 1) Then Return 0 End If If (N < K) Then ret = 0 For i = 2 .. N ret = (ret + K) mod i End For Return ret End If ret = Josephus(N - N / K, K); If (ret < N mod K) Then ret = ret - N mod K + N Else ret = ret - N mod K + (ret - N mod K) / (K - 1) End If Return ret
改进后的算法可以很快将N的规模减小到K,对于K不是很大的问题能够快速求解。