1.cnn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
torch.manual_seed(0)
EPOCH = 1
BATCH_SIZE = 50
DOWNLOAD_MNIST = False
train_dataset = datasets.MNIST(
root="./mnist",
train=True,
transform=transforms.ToTensor(),
download=False)
test_dataset = datasets.MNIST(
root="./mnist",
train=False,
transform=transforms.ToTensor(),
download=False)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=100,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False)
test_x = torch.unsqueeze(test_dataset.test_data, dim=1).type(torch.FloatTensor)[
:2000] / 255.
test_y = test_dataset.test_labels[:2000]
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(
in_channels=1,
out_channels=32,
kernel_size=3,
stride=1,
padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(
in_channels=32,
out_channels=64,
kernel_size=3,
stride=1,
padding=1)
self.fc = nn.Linear(64 * 7 * 7, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 64 * 7 * 7)
x = self.fc(x)
return x
model = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
for epoch in range(1):
for i, (images, labels) in enumerate(train_loader):
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % 50 == 0:
data_all = model(test_x)
last_layer = data_all
test_output = data_all
pred_y = torch.max(test_output, 1)[1].data.numpy()
accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.4f' % accuracy)
data_all1 = model(test_x[:10])
test_output = data_all1
_ = data_all1
pred_y = torch.max(test_output, 1)[1].data.numpy()
print(pred_y, 'prediction number')
print(test_y[:10].numpy(), 'real number')
2.bpnn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import torchvision
DOWNLOAD_MNIST = False # 表示还没有下载数据集,如果数据集下载好了就写False
BATCH_SIZE = 50
LR = 0.01 # 学习率
# 下载mnist手写数据集
train_loader = torchvision.datasets.MNIST(
root='./mnist/', # 保存或提取的位置 会放在当前文件夹中
train=True, # true说明是用于训练的数据,false说明是用于测试的数据
transform=torchvision.transforms.ToTensor(), # 转换PIL.Image or numpy.ndarray
download=DOWNLOAD_MNIST, # 已经下载了就不需要下载了
)
test_loader = torchvision.datasets.MNIST(
root='./mnist/',
train=False # 表明是测试集
)
train_data = torch.utils.data.DataLoader(dataset=train_loader, batch_size=BATCH_SIZE, shuffle=True)
# 为了节约时间, 我们测试时只测试前2000个
test_x = torch.unsqueeze(test_loader.test_data, dim=1).type(torch.FloatTensor)[
:2000] / 255. # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
test_y = test_loader.test_labels[:2000]
# 定义模型
class BPNN(nn.Module):
def __init__(self):
super(BPNN, self).__init__()
self.fc1 = nn.Linear(28 * 28, 512)#定义了一个全连接层fc1,该层的输入是28 * 28个数字,输出是512个数字
self.fc2 = nn.Linear(512, 512)
self.fc3 = nn.Linear(512, 10)
def forward(self, x):#x是输入的图像
x = x.view(-1, 28 * 28)#将输入x的形状转换为二维,分别是batch_size和28 * 28
x = F.relu(self.fc1(x))#将x通过第1个全连接层fc1进行计算,并将结果通过ReLU激活函数处理
x = F.relu(self.fc2(x))
x = self.fc3(x)
#Softmax函数是一种分类模型中常用的激活函数,它能将输入数据映射到(0,1)范围内,并且满足所有元素的和为1
return F.log_softmax(x, dim=1)#dim=1表示对每一行的数据进行运算
# 初始化模型
bpnn = BPNN()
print(bpnn)
# 定义损失函数和优化器
optimizer = torch.optim.Adam(bpnn.parameters(), lr=LR) # optimize all parameters
loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted
#
# criterion = nn.NLLLoss()
# optimizer = optim.SGD(bpnn.parameters(), lr=0.01, momentum=0.5)
# 训练模型
for epoch in range(1):
for step, (b_x,b_y) in enumerate(train_data):
b_x = b_x.view(-1, 28, 28) # reshape x to (batch, time_step, input_size)
output = bpnn(b_x)
loss = loss_func(output, b_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % 50 == 0:
test_x = test_x.view(-1, 28, 28)
test_output = bpnn(test_x)
pred_y = torch.max(test_output, 1)[1].data.squeeze()
acc = (pred_y == test_y).sum().float() / test_y.size(0)
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.float(), 'test acc: ', acc.numpy())
test_output = bpnn(test_x[:10].view(-1, 28, 28))
pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
print(pred_y, 'prediction number')
print(test_y[:10], 'real number')
# # 评估模型
# bpnn.eval()
# correct = 0
# with torch.no_grad():
# for data, target in test_loader:
# output = bpnn(data)
# pred = output.argmax(dim=1, keepdim=True)
# correct += pred.eq(target.view_as(pred)).sum().item()
#
# print('Test accuracy:', correct / len(test_loader.dataset))
3.lstm
import torch
from torch import nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
torch.manual_seed(1)
EPOCH = 1
BATCH_SIZE = 64
TIME_STEP = 28
INPUT_SIZE = 28
LR = 0.01
DOWNLOAD_MNIST = False
train_data = dsets.MNIST(
root='./mnist/',
train=True,
transform=transforms.ToTensor(),
download=DOWNLOAD_MNIST,
)
test_data = dsets.MNIST(root='./mnist/', train=False)
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[
:2000] / 255.
test_y = test_data.test_labels[:2000]
class Lstm(nn.Module):
def __init__(self):
super(Lstm, self).__init__()
self.Lstm = nn.LSTM(
input_size=28,
hidden_size=64,
num_layers=1,
batch_first=True,
)
self.out = nn.Linear(64, 10)
def forward(self, x):
r_out, (h_n, h_c) = self.Lstm(x, None)
out = self.out(r_out[:, -1, :])
return out
Lstm = Lstm()
print(Lstm)
optimizer = torch.optim.Adam(Lstm.parameters(), lr=LR)
loss_func = nn.CrossEntropyLoss()
for epoch in range(EPOCH):
for step, (x, b_y) in enumerate(train_loader):
b_x = x.view(-1, 28, 28)
output = Lstm(b_x)
loss = loss_func(output, b_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % 50 == 0:
test_x = test_x.view(-1, 28, 28)
test_output = Lstm(test_x)
pred_y = torch.max(test_output, 1)[1].data.squeeze()
acc = (pred_y == test_y).sum().float() / test_y.size(0)
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.float(), 'test acc: ', acc.numpy())
test_output = Lstm(test_x[:10].view(-1, 28, 28))
pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
print(pred_y, 'prediction number')
print(test_y[:10], 'real number')
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!