机器学习实战-AdaBoost
1.概念
从若学习算法出发,反复学恶习得到一系列弱分类器(又称基本分类器),然后组合这些弱分类器构成一个强分类器。简单说就是假如有一堆数据data,不管是采用逻辑回归还是SVM算法对当前数据集通过分类器data进行分类,假如一些数据经过第一个分类器之后发现是对的,而另一堆数据经过第一个分类器之后发现数据分类错了,在进行下一轮之前就可以对这些数据进行修改权值的操作,就是对上一轮分类对的数据的权值减小,上一轮分类错的数据的权值增大。最后经过n个分类器分类之后就可以得到一个结果集
注意:adaboost算法主要用于二分类问题,对于多分类问题,adaboost算法效率在大多数情况下就不如随机森林和决策树
要解决的问题:如何将弱分类器(如上描述每次分类经过的每个分类器都是一个弱分类器)组合成一个强分类器:加大分类误差小的瑞分类权值减小分类误差大的弱分类器权值
1.1举例分析
2.决策树,随机森林,adaboost算法比较
以乳腺癌为例来比较三种算法2.1 加载数据
#使用train_test_split将数据集拆分
from sklearn.model_selection import train_test_split
#将乳腺癌的数据导入,return这个参数是指导入的只有乳腺癌的数据
#如果没有参数,那么导入的就是一个字典,且里面有每个参数的含义
X,y=datasets.load_breast_cancer(return_X_y=True)
#测试数据保留整个数据集的20%
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size= 0.2)
2.2使用决策树
score=0
for i in range(100):
model=DecisionTreeClassifier()
#将训练集数据及类别放入模型中
model.fit(X_train,y_train)
y_ =model.predict(X_test)#预测测试集里的数据类型
score+=accuracy_score(y_test,y_)/100
print("多次执行,决策树准确率是:",score)
运行结果
2.3随机森林
score=0
for i in range(100):
#随机森林的两种随机性:一种是随机抽样,另一种是属性的随机获取。而决策树只有随机抽样一种随机性
model=RandomForestClassifier()
#将训练集数据及类别放入模型中
model.fit(X_train,y_train)
y_ =model.predict(X_test)#预测测试集里的数据类型
score+=accuracy_score(y_test,y_)/100
print("多次执行,随机森林的准确率为是:",score)
2.4adaboost自适应提升算法
score=0
for i in range(100):
model=AdaBoostClassifier()
#将训练集数据及类别放入模型中
model.fit(X_train,y_train)
y_ =model.predict(X_test)#预测测试集里的数据类型
score += accuracy_score(y_test,y_)/100
print("多次执行,adaboost准确率是:",score)
3.手撕算法
adaboost三轮计算结果
在代码中的体现就是X[i]的值
import numpy as np
from sklearn.ensemble import AdaBoostClassifier
from sklearn import tree
import graphviz
X=np.arange(10).reshape(-1,1)#二维,机器学习要求数据必须是二维的
y=np.array([1,1,1,-1,-1,-1,1,1,1,-1])
display(X,y)
display(X,y)运行结果如下图
# SAMME表示构建树的时候,采用相同的裂分方式
#n_estimators表示分裂为三颗树
model = AdaBoostClassifier(n_estimators=3,algorithm='SAMME')
model.fit(X,y)
y_=model.predict(X)
第一颗树的可视化
dot_data=tree.export_graphviz(model[0],filled=True,rounded=True)
graphviz.Source(dot_data)
运行结果
第二棵树的可视化
dot_data=tree.export_graphviz(model[1],filled=True,rounded=True)
graphviz.Source(dot_data)
第三课树的可视化
dot_data=tree.export_graphviz(model[2],filled=True,rounded=True)
graphviz.Source(dot_data)
3.1第一轮
3.1.2gini系数的计算
此处计算的X[i]的值也就是v的值w1=np.full(shape=10,fill_value=0.1)#初始的样本权重
cond=y ==1 #类别1条件
p1 = w1[cond].sum()
p2= 1-p1
display(p1,p2)
gini=p1*(1-p1)+p2*(1-p2)
上图可知第一棵树的X[0]=2.5的由来方式如下代码如实现
gini_result=[]
best_split={}#最佳分裂条件,X[0]<=2.5
lower_gini = 1#比较
for i in range(len(X)-1):#数组下标从0到9,10个数据一共要切九刀
split=X[i:i+2].mean()#裂开条件,就是假如一开始要将0和1裂开并取出
cond=(X<=split).ravel()#变成一维的,左边数据
left=y[cond]
right=y[~cond]#取反
#左右两边的gini系数
gini_left=0
gini_right=0
for j in np.unique(y):#y表示类别
p_left=(left==j).sum()/left.size#计算左边某个类别的概率
gini_left=p_left*(1-p_left)
p_right=(right==j).sum()/right.size#计算右边某个类别的概率
gini_right=p_right*(1-p_right)
#左右两边的gini系数合并
left_p=cond.sum()/cond.size
right_p=1-left_pc
gini=gini_left*left_p + gini_right*right_p
gini_result.append(gini)
if gini <lower_gini:
lower_gini=gini
best_split.clear()
best_split['X[0]<=']=split
print(gini_result)
print(best_split)
3.1.3求误差
y1_=model[0].predict(X)#由v得到的预测结果小于v为1,大于v为-1
error1=(y!=y1_).mean()#求出预测值与实际值不相等元素的个数,并求平均
3.1.4计算第一个若学习器的权重
alpha_1=1/2*np.log((1-error1)/error1)
3.1.5 跟新样本权重
#上一次权重的基础上进行跟新
#y表示真是的目标值
#ht(X)表示当前若学习器预测的结果
w2= w1*np.exp(-y*y1_*alpha_1)
w2=w2/w2.sum()#权重的归一化操作,和正好是1
display(w1,w2)
display(y,y1_)
由下方运行结果可知当预测结果与原数据不相同时,该样本对应的权值也会随之增大;反之若预测正确则权值会减小
3.2第二轮的计算
也即第二课数的计算cond=y==-1
np.round(w2[cond].sum(),3)#找到类别为-1的所有权值的和,四舍五入保留3位小数
cond2=y==1
np.round(w2[cond2].sum(),3)
3.2.1 gini系数的计算
cond=y ==1 #类别1条件
p1 = w2[cond].sum()#使用新的样本权重分布
p2= 1-p1
display(p1,p2)
gini=p1*(1-p1)+p2*(1-p2)
3.2.2拆分的条件
gini_result=[]
best_split={}#最佳分裂条件,X[0]<=8.5
lower_gini = 1#比较
for i in range(len(X)-1):#数组下标从0到9,10个数据一共要切九刀
split=X[i:i+2].mean()#裂开条件,就是假如一开始要将0和1裂开并取出
cond=(X<=split).ravel()#变成一维的,左边数据
left=y[cond]
right=y[~cond]#取反
#left_p=cond.sum()/cond.size#这种方式计算概率适用于每个样本的权重一样
left_p = w2[cond]/w2[cond].sum()#归一化,左侧每个样本在自己组内的概率
right_p=w2[~cond]/w2[~cond].sum()#归一化,右侧每个样本在自己组内概率
#左右两边的gini系数
gini_left=0
gini_right=0
for j in np.unique(y):#y表示类别
cond_left=left==j#左侧某个类别
p_left=left_p[cond_left].sum()#计算左边某个类别的概率
gini_left += p_left*(1-p_left)
cond_right=right==j#右侧某个类别
p_right=right_p[cond_right].sum()#计算右边某个类别的概率
gini_right += p_right*(1-p_right)
#左右两边的gini系数合并
p1=cond.sum()/cond.size#左侧划分数据所占的比例
p2=1-p1#右侧划分数据所占的比例
gini=gini_left*p1 +gini_right*p2
gini_result.append(gini)
if gini <lower_gini:
lower_gini=gini
best_split.clear()
best_split['X[0]<=']=split
print(gini_result)
print(best_split)
3.2.3计算误差
y2_ = model[1].predict(X)#根据求出来的v得到预测的结果
error2=((y != y2_)*w2).sum()
error2
3.2.4计算第二个弱学习器权重
alpha_2=1/2*np.log((1-error2)/error2)
alpha_2
3.2.5跟新样本权重
#上一次权重的基础上进行更新
#y表示真是的目标值
#ht(X)表示当前若学习器预测的结果
w3= w2*np.exp(-y*y2_*alpha_2)
w3=w3/w3.sum()#权重的归一化操作,和正好是1
display(w2,w3)
display(y,y2_)
3.3第三轮计算
3.3.1 gini系数
cond=y ==1 #类别1条件
p1 = w3[cond].sum()#使用新的样本权重分布
p2= 1-p1
display(p1,p2)
gini=p1*(1-p1)+p2*(1-p2)
gini
3.3.2拆分条件
gini_result=[]
best_split={}#最佳分裂条件,X[0]<=2.5
lower_gini = 1#比较
for i in range(len(X)-1):#数组下标从0到9,10个数据一共要切九刀
split=X[i:i+2].mean()#裂开条件,就是假如一开始要将0和1裂开并取出
cond=(X<=split).ravel()#变成一维的,左边数据
left=y[cond]
right=y[~cond]#取反
#left_p=cond.sum()/cond.size#这种方式计算概率适用于每个样本的权重一样
left_p = w3[cond]/w3[cond].sum()#归一化,左侧每个样本在自己组内的概率
right_p=w3[~cond]/w3[~cond].sum()#归一化,右侧每个样本在自己组内概率
#左右两边的gini系数
gini_left=0
gini_right=0
for j in np.unique(y):#y表示类别
cond_left=left==j#左侧某个类别
p_left=left_p[cond_left].sum()#计算左边某个类别的概率
gini_left += p_left*(1-p_left)
cond_right=right==j#右侧某个类别
p_right=right_p[cond_right].sum()#计算右边某个类别的概率
gini_right += p_right*(1-p_right)
#左右两边的gini系数合并
p1=cond.sum()/cond.size#左侧划分数据所占的比例
p2=1-p1#右侧划分数据所占的比例
gini=gini_left*p1 +gini_right*p2
gini_result.append(gini)
if gini <lower_gini:
lower_gini=gini
best_split.clear()
best_split['X[0]<=']=split
print(gini_result)
print(best_split)
3.3.3计算误差
y3_ = model[2].predict(X)#根据求出来的v得到预测的结果
error3=((y != y3_)*w3).sum()
error3
3.3.4计算第三个弱学习器权重
alpha_3=1/2*np.log((1-error3)/error3)
alpha_3
3.3.5跟新权重
#上一次权重的基础上进行更新
#y表示真是的目标值
#ht(X)表示当前若学习器预测的结果
w4= w3*np.exp(-y*y3_*alpha_3)
w4=w4/w4.sum()#权重的归一化操作,和正好是1
display(w3,w4)
display(y,y3_)
3.4弱学习器的聚合
print("每一个弱分类器的预测结果:")
display(y1_,y2_,y3_)
#F 表示聚合各个弱学习器的评分
F=alpha_1*y1_ + alpha_2*y2_ + alpha_3*y3_
#将多个弱分类器,整合,变成了强分类器F(X)
print("强分类器合并结果:\n",F)
#根据得到的最终的F,如果i大于0就是1,否则就是-1,就像把最终的结果放进符号函数中
print("强分类器最终结果如下:\n",np.array([1 if i > 0 else -1 for i in F]))
print("算法预测结果为:\n",model.predict(X))