最大公约数和最小公倍数

求a,b的最大公约数,再通过最大公约数求出最小公倍数是一种问题!

 最小公倍数公式:a*b/m(m为最大公约数)

推导:a=m*i,b=m*j,最小公倍数=m*i*j

更相损减法: 《九章算術·方田》作分數約簡時,提到求最大公因數方法:反覆把兩數的較大者減去較小者,直至兩數相等,這數就是最大公因數。這方法除了把除法換作減法外,與輾轉相除法完全相同。例如書中求91和49的最大公因數: 91 > 49, 91 - 49 = 42 49 > 42, 49 - 42 = 7 42 > 7, 42 - 7 = 35 35 > 7, 35 - 7 = 28 28 > 7, 28 - 7 = 21 21 > 7, 21 - 7 = 14 14 > 7, 14 - 7 = 7 7 = 7, 因此91和49的最大公因數是7 辗转相除法: 輾轉相除法是利用以下性質來確定兩個正整數 a 和 b 的最大公因數的: 若 r 是 a ÷ b 的餘數, 則 gcd(a,b) = gcd(b,r) a 和其倍數之最大公因數為 a。 另一種寫法是: a ÷ b,令r為所得餘數(0≤r<b) 若 r = 0,演算法結束;b 即為答案。 互換:置 a←b,b←r,並返回第一步。

这个算法可以用递归写成如下:   

function gcd(a, b)

{   

if a mod b<>0   

return gcd(b, a mod b);   

else   

return a;   

}

 

C语言:

 

 1 int gcd(int a,int b)//最大公约数
 2 
 3 {
 4 
 5 if (a<b) return gcd(b,a);
 6 
 7 else if (b==0) return a;
 8 
 9 else return gcd(b,a%b);
10 
11 }
12 
13 
14 
15 int lcm(int a,int b)
16 
17 {
18 
19 return a*b/gcd(a,b);
20 
21 }

 

posted @ 2018-08-14 17:39  暴走的二萌  阅读(1611)  评论(0编辑  收藏  举报