vπ(s)=E[Rt+1∣St=s]+γE[Gt+1∣St=s],=∑a∈Aπ(a∣s)∑r∈Rp(r∣s,a)rmean of immediate rewards +γ∑a∈Aπ(a∣s)∑s′∈Sp(s′∣s,a)vπ(s′),mean of future rewards =∑a∈Aπ(a∣s)[∑r∈Rp(r∣s,a)r+γ∑s′∈Sp(s′∣s,a)vπ(s′)], for all s∈S.
two equivalent expressions
First
First, it follows from the law of total probability that
Second, the reward r may depend solely on the next state s′ in some problems. As a result, we can write the reward as r(s′) and hence p(r(s′)∣s,a)=p(s′∣s,a), substituting which into (2.7) gives
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人