排序
数组排序
概念
对一序列对象根据某个关键字进行排序
时间复杂度
一个算法执行所耗费的时间
空间复杂度
运行完一个程序所需内存的大小
常见算法
算法 | 时间复杂度 | 最好情况 | 最坏情况 | 空间复杂度 | 稳定性 |
---|---|---|---|---|---|
快速排序 | O(n log n) | O(n log n) | O(n2) | O(log n) | 不稳定 |
冒泡排序 | O(n2) | O(n2) | O(n2) | O(1) | 稳定 |
选择排序 | O(n2) | O(n2) | O(n2) | O(1) | 不稳定 |
插入排序 | O(n2) | O(n ) | O(n2) | O(1) | 稳定 |
快速排序
- 从数列中挑出一个元素,称为 "基准"(pivot);
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
冒泡排序
- 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
- 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
- 针对所有的元素重复以上的步骤,除了最后一个;
- 重复步骤 1~3,直到排序完成。
选择排序
- 初始状态:无序区为 R[1..n],有序区为空;
- 第 i 趟排序(i=1,2,3...n-1)开始时,当前有序区和无序区分别为 R[1..i-1]和 R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第 1 个记录 R 交换,使 R[1..i]和 R[i+1..n)分别变为记录个数增加 1 个的新有序区和记录个数减少 1 个的新无序区;
- n-1 趟结束,数组有序化了。
插入排序
- 从第一个元素开始,该元素可以认为已经被排序;
- 取出下一个元素,在已经排序的元素序列中从后向前扫描;
- 如果该元素(已排序)大于新元素,将该元素移到下一位置;
- 重复步骤 3,直到找到已排序的元素小于或者等于新元素的位置;
- 将新元素插入到该位置后;
- 重复步骤 2~5。