2.5 死锁
2.5 死锁
什么是死锁
如哲学家进餐问题:每位哲学家都在等待自己右边的人放下筷 子,这些哲学家进程都因等待筷子资源而 被阻塞。即发生“死锁”
semaphore chopstick[5]={1,1,1,1,1};
Pi (){ //i号哲学家的进程
while(1){
P(chopstick[i]); //拿左
P(chopstick[(i+1)%5]); //拿右
吃饭…
V(chopstick[i]); //放左
V(chopstick[(i+1)%5]); //放右
思考…
}
}
什么是死锁
在并发环境下,各进程因竞 争资源而造成的一种互相等待对方手里的资源,导致各进程都阻塞,都无法向前推 进的现象,就是“死锁”。 发生死锁后若无外力干涉, 这些进程都将无法向前推进。
死锁、饥饿、死循环
- 死锁:各进程互相等待对方手里的资源,导致各进程都阻塞,无法向前推进的现象。
- 饥饿:由于长期得不到想要的资源,某进程无法向前推进的现象。
- 死循环:某进程执行过程中一直跳不出某个循环的现象。
死锁一定是“循环等待对方手里的资源”导致的,因此如果有死锁现象,那至少有两个或两个以上的进程同时发生死锁。另外,发生死锁的进程一定处于阻塞态。
可能只有一个进程发生饥饿。发生饥饿的进程既可能是阻塞态(如长期得不到 需要的I/O设备),也可能是就绪态(长期得不到处理机)
死锁产生的必要条件
产生死锁必须同时满足一下四个条件,只要其中任一条件不成立,死锁就不会发生。
-
互斥条件:只有对必须互斥使用的资源的争抢才会导致死锁(如哲学家的筷子、打印机设备)。 像内存、扬声器这样可以同时让多个进程使用的资源是不会导致死锁的(因为进程不用阻塞等待 这种资源)。
-
不剥夺条件:进程所获得的资源在未使用完之前,不能由 其他进程强行夺走,只能主动释放。
-
请求和保持条件:进程已经保持了至少一个资源,但又提 出了新的资源请求,而该资源又被其他进程占有,此时请 求进程被阻塞,但又对自己已有的资源保持不放。
-
循环等待条件:存在一种进程资源的循环等待链,链中的 每一个进程已获得的资源同时被下一个进程所请求。 注意!发生死锁时一定有循环等待,但是发生循环等 待时未必死锁(循环等待是死锁的必要不充分条件)
如果同类资源数大于1,则即使有循环等待,也 未必发生死锁。但如果系统中每类资源都只有 一个,那循环等待就是死锁的充分必要条件了。
问
在设计设备分配算法时,分配算法的安全性是需要考虑的问题,请先描述死锁发生的必要条件,然后结合这些条件说明设备安全分配方式和不安全分配方式的情况。
安全分配方式是:每当进程发出I/O请求后便进入阻塞状态,直到其I/O操作完成时才被唤醒。这时,一旦进程已经获得某种设备后便阻塞,不能再请求任何资源,而在它阻塞时又不保持任何资源。因此,该方式摒弃了造成死锁的四个必要条件之一的“请求和保持”条件,故设备分配是安全的。
不安全分配方式指:进程在发出I/O请求后继续运行,需要时又发出第二个I/O请求、第三个I/O请求等。仅当进程所请求的设备已被另一个进程占用时才进入阻塞状态。这样,进程在保有已分配资源的情况下仍然继续请求资源,这就没能消除“请求和保持”条件。由于设备使用本身具有互斥要求,且在使用过程中不可抢占,因此可能产生循环等待从而出现死锁,显然该分配方式是不安全的。
什么时候会发生死锁
- 对系统资源的竞争。各进程对不可剥夺的资源(如打印机)的竞争可能引起死锁,对可剥夺的资
源(CPU)的竞争是不会引起死锁的。 - 进程推进顺序非法。请求和释放资源的顺序不当,也同样会导致死锁。例如两进程会因为申请的资源被对方占有而阻塞,从而发生死锁。
- 信号量的使用不当也会造成死锁。如生产者-消费者问题中,如果实现互斥的P操作在实现同步的
P操作之前,就有可能导致死锁。(可以把互斥信号量、同步信号量也看做是一种抽象的系统资
源)
对不可剥夺资源的不合理分配,可能导致死锁
死锁的处理策略
- 预防死锁。破坏死锁产生的四个必要条件中的一个或几个。
- 避免死锁。用某种方法防止系统进入不安全状态,从而避免死锁(银行家算法)
- 死锁的检测和解除。允许死锁的发生,不过操作系统会负责检测出死锁的发生,然后采取某种措施解除死锁。
预防死锁
- 死锁的处理
- 不允许死锁发生
- 静态策略:预防死锁
- 破坏互斥条件
- 破坏请求和保持条件
- 破坏不剥夺条件
- 破坏循环等待条件
- 动态策略:避免死锁
- 静态策略:预防死锁
- 允许死锁发生
- 死锁的检测和清除
- 不允许死锁发生
破坏互斥条件
只有必须互斥的使用的资源的争抢才导致死锁。
如果把互斥资源改造为共享资源,就不会进入死锁状态。比如用SPOOLing技术把打印改造为共享设备
策略缺点:不是所有资源都可以改造为共享资源,并且为了系统安全,必须保护这种互斥性,很多时候都无法破坏互斥条件。
破坏不剥夺条件
不剥夺条件:进程所获得资源在未使用完之前,不能由其他进程强行夺走,只能主动释放。
破坏不剥夺条件的方案:
方案一:当某个进程请求新的资源得不到满足时,它必须立即释放保持的所有资源,待以后需要时再重新申请。
方案二:当某个进程需要的资源被其他进程所占有的时候,可以由操作系统协助,将想要的资源强行剥夺。这种方式一般需要考虑各进程的优先级(比如:剥夺调度方式,就是将处理机资源强行剥 夺给优先级更高的进程使用)
该策略的缺点: 1. 实现起来比较复杂。 2. 释放已获得的资源可能造成前一阶段工作的失效。因此这种方法一般只适用于易保存和恢复状态 的资源,如CPU。 3. 反复地申请和释放资源会增加系统开销,降低系统吞吐量。 4. 若采用方案一,意味着只要暂时得不到某个资源,之前获得的那些资源就都需要放弃,以后再重 新申请。如果一直发生这样的情况,就会导致进程饥饿。
破坏请求和保持条件
请求和保持条件:进程已经保持了至少一个资源,但又提出了新的资源请求,而该资源又被其他进 程占有,此时请求进程被阻塞,但又对自己已有的资源保持不放。
方案:静态分配方法,即进程在运行前一次申请完它所需要的全部资源,在它的资源未满足前, 不让它投入运行。一旦投入运行后,这些资源就一直归它所有,该进程就不会再请求别的任何资源 了。
该策略实现起来简单,但也有明显的缺点: 有些资源可能只需要用很短的时间,因此如果进程的整个运行期间都一直保持着所有资源,就会造 成严重的资源浪费,资源利用率极低。另外,该策略也有可能导致某些进程饥饿。
破坏循环等待条件
循环等待条件:存在一种进程资源的循环等待链,链中的每一个进程已获得的资源同时被下一个进程所请求。
可采用顺序资源分配法。首先给系统中的资源编号,规定每个进程必须按编号递增的顺序请求资源, 同类资源(即编号相同的资源)一次申请完。原理分析:一个进程只有已占有小编号的资源时,才有资格申请更大编号的资源。按此规则,已持 有大编号资源的进程不可能逆向地回来申请小编号的资源,从而就不会产生循环等待的现象
假设系统中共有10个资源,编号为 1, 2, …… 10;在任何一个时刻,总 有一个进程拥有的资 源编号是最大的,那 这个进程申请之后的 资源必然畅通无阻。 因此,不可能出现所有进程都阻塞的死锁现象
该策略的缺点: 1. 不方便增加新的设备,因为可能 需要重新分配所有的编号; 2. 进程实际使用资源的顺序可能和 编号递增顺序不一致,会导致资源 浪费; 3. 必须按规定次序申请资源,用户 编程麻烦。
避免死锁
什么是安全序列
所谓安全序列,就是指如果系统按照这种序列分配资源,则每个进程都能顺利完成。只要能找出一个 安全序列,系统就是安全状态。
当然,安全序列可能有多个。 如果分配了资源之后,系统中找不出任何一个安全序列,系统就进入了不安全状态。
这就意味着之后 可能所有进程都无法顺利的执行下去。当然,如果有进程提前归还了一些资源,那系统也有可能重新 回到安全状态,不过我们在分配资源之前总是要考虑到最坏的情况。
如果系统处于安全状态,就一定不会发生死锁。如果系统进入不安全状态,就可能发生死锁(处于不 安全状态未必就是发生了死锁,但发生死锁时一定是在不安全状态) 因此可以在资源分配之前预先判断这次分配是否会导致系统进入不安全状态,以此决定是否答应资源 分配请求。这也是“银行家算法”的核心思想。
银行家算法
银行家算法是荷兰学者 Dijkstra 为银行系统设计的,以确保银行在发放现金贷款时,不会发生不能 满足所有客户需要的情况。后来该算法被用在操作系统中,用于避免死锁。
核心思想:在进程提出资源申请时,先预判此次分配是否会导致系统进入不安全状态。如果会进 入不安全状态,就暂时不答应这次请求,让该进程先阻塞等待。
思考:BAT 的例子中,只有一种类型的资源——钱,但是在计算机系统中会 有多种多样的资源,应该怎么把算法拓展为多种资源的情况呢?
银行家算法步骤: ①检查此次申请是否超过了之前声明的最大需求数 ②检查此时系统剩余的可用资源是否还能满足这次请求 ③试探着分配,更改各数据结构 ④用安全性算法检查此次分配是否会导致系统进入不安全状态 安全性算法步骤: 检查当前的剩余可用资源是否能满足某个进程的最大需求,如果可以,就把该进程加入安全序列, 并把该进程持有的资源全部回收。 不断重复上述过程,看最终是否能让所有进程都加入安全序列
:问题2)如果满足该请求,则剩余资源数为:(0,0, 1),按照银行家算法检查系统的安全性可知剩余资源数无法满足任意进程的需求,因此进入了不安全状态,所以本次请求不能满足。(2分)
系统处于不安全状态未必死锁,但死锁时一定处于不安全状态。系统处于安全状态一定不会死锁。
检测和解除
如果系统中既不采取预防死锁的措施,也不采取避免死锁的措施,系统就很可能发生死锁。
在这种情况下,系统应当提供两个算法:
①死锁检测算法:用于检测系统状态,以确定系统中是否发生了死锁。
②死锁解除算法:当认定系统中已经发生了死锁,利用该算法可将系统从死锁状态中解脱出来。
死锁的检测
为了能对系统是否已发生了死锁进行检测,必须:
①用某种数据结构来保存资源的请求和分配信息;
②提供一种算法,利用上述信息来检测系统是否已进入死锁状态。
数据结构资源分配图
两种节点:进程节点——对应一个进程,资源节点——对应一类资源,资源可能有多个
两种边:进程节点申请资源,资源已经分配给几个进程
如果按上述过程分析,最终能消除所有边,就称这个图 是可完全简化的。此时一定没有发生死锁(相当于能找 到一个安全序列)
如果最终不能消除所有边,那么此时就是发生了死锁
可以消除所有的边, 说明未发生死锁!!!可以消除所有的边, 说明未发生死锁
死锁定理:若资源分配图是不可完全简化的,说明发生了死锁
死锁的解除
一旦检测出死锁的发生,就应该立即解除死锁。
补充:并不是系统中所有的进程都是死锁状态,用死锁检测算法化简资源分配图后,还连着边的 那些进程就是死锁进程
解除死锁的主要方法有:
- 资源剥夺法。挂起(暂时放到外存上)某些死锁进程,并抢占它的资源,将这些资源分配给 其他的死锁进程。但是应防止被挂起的进程长时间得不到资源而饥饿。
- 撤销进程法(或称终止进程法)。强制撤销部分、甚至全部死锁进程,并剥夺这些进程的资 源。这种方式的优点是实现简单,但所付出的代价可能会很大。因为有些进程可能已经运行 了很长时间,已经接近结束了,一旦被终止可谓功亏一篑,以后还得从头再来。
- 进程回退法。让一个或多个死锁进程回退到足以避免死锁的地步。这就要求系统要记录进程 的历史信息,设置还原点。
如何决定“对谁动手”
- 进程优先级
- 已执行多长时间
- 还要多久能完成
- 进程已经使用了多少资源
- 进程是交互式的还是批处理式的