What is FFT? FFT学习笔记
在时间序列、数字信号的数据处理中经常会看到使用FFT作为一段数据中提取频率的手段,但是往往文中没有花大笔墨去解释,仿佛所有人都了解这个概念。
FFT(Fast Fourier Transform) 为快速傅里叶变换,是一种高效计算DFT(Discrete Fourier Transform),离散傅里叶变换的方法。在了解FFT之前需要先了解DFT的作用。
DFT
离散傅里叶变换(Discrete Fourier Transform,简称DFT)是一种数学算法,用于将一个序列或信号从时域转换到频域,广泛应用于信号处理、图像处理、音频分析、通信系统等领域。时域是指信号随时间的变化,而频域则描述了信号中不同频率成分的分布。人话说,就是由一段x=时间; y=幅度的信号数据转换成为x=频率; y=幅度的数据,可以参考以下这个图:
原信号(上图)中存在两种不同的频率(f=25
和 f=100
),通过DFT提取可以看到下图中,它们在频域上显示了两个峰出来。在频域中,信号被表示为一系列频率成分,每个成分由一个幅度(amplitude)和相位(phase)组成。
DFT是傅里叶分析在离散信号处理领域的核心工具,主要目的是将离散信号(时域信号)转换成其对应的频。与连续信号不同,离散信号在时间上是分隔的,例如数字音频或图像数据。
数学表达
DFT将一个长度为
其中,
由于因为它涉及对每个输出频率
FFT
FFT主要采用了一些技巧来简化流程。
复数单位根
首先将以上公式
证明:
Definition: 如果一个复数
由于欧拉公式
多项式变换
首先确定几个notation,我们要处理的信号数据是
我们使用
让我们不失一般性地,假设
将公式
将
因此,通过计算
本文来自博客园,作者:落魄统计佬,转载请注明原文链接:https://www.cnblogs.com/tungsten106/p/17985363/what_is_fft
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek “源神”启动!「GitHub 热点速览」
· 我与微信审核的“相爱相杀”看个人小程序副业
· 微软正式发布.NET 10 Preview 1:开启下一代开发框架新篇章
· C# 集成 DeepSeek 模型实现 AI 私有化(本地部署与 API 调用教程)
· spring官宣接入deepseek,真的太香了~