icpc2019 香港 C. Constructing Ranches (点分治)
题目链接:https://codeforces.com/gym/102452/problem/C
\(n\) 条边能够形成多边形的结论是所有边之和大于最长的边
于是点分治,维护每个点到根的路径上的点权和和点权最大值,统计满足 \(sum[u]+sum[v]-a[rt]>2\times max\{mx[u], mx[v]\}\),的点对\((u,v)\)的数量,考虑将所有点的 \(sum\) 按 \(mx\) 排序,这样从小到大扫描时保证当前点 \(u\) 的 \(mx\) 为最大值,然后树状数组统计满足 \(sum[v] > 2*mx[u]-sum[u]+a[rt]\) 的点 \(v\) 的数量,容斥即可
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 400010;
const ll INF = 1e18+7;
int T, n, m;
ll a[maxn], ans;
int h[maxn], cnt = 0;
struct E{
int to, next;
}e[maxn<<1];
void add(int u, int v){
e[++cnt].to = v;
e[cnt].next = h[u];
h[u] = cnt;
}
int rt, tot;
int sz[maxn], son[maxn], vis[maxn], maxson;
void getrt(int u, int par){
sz[u] = 1; son[u] = 0;
for(int i = h[u] ; i != -1 ; i = e[i].next){
int v = e[i].to;
if(vis[v] || v == par) continue;
getrt(v, u);
sz[u] += sz[v];
son[u] = max(son[u], sz[v]);
}
son[u] = max(son[u], tot - sz[u]);
if(son[u] < maxson){
maxson = son[u];
rt = u;
}
}
struct Node{
int id;
ll dis, mx;
bool operator < (const Node & x) const{
return mx < x.mx;
}
}p[maxn];
int num = 0;
ll dis[maxn], mx[maxn], b[maxn];
void getdis(int u, int par){
++num;
p[num].id = u, p[num].dis = dis[u], p[num].mx = mx[u];
b[num] = dis[u];
for(int i = h[u] ; i != -1 ; i = e[i].next){
int v = e[i].to;
if(vis[v] || v == par) continue;
dis[v] = dis[u] + a[v];
mx[v] = max(mx[u], a[v]);
getdis(v, u);
}
}
int q;
ll c[maxn];
void ad(int x, int val){
for(int i = x ; i <= 200000 ; i += i&(-i)){
c[i] += val;
}
}
ll sum(int x){
ll res = 0;
for(int i = x ; i ; i -= i & (-i)){
res += c[i];
}
return res;
}
void calc(int u){
num = 0;
dis[u] = a[u], mx[u] = a[u];
getdis(u, 0);
sort(p+1, p+1+num);
b[num+1] = INF;
sort(b+1, b+1+num+1);
q = unique(b+1, b+1+num+1)-b-1;
for(int i = 1 ; i <= num ; ++i) {
p[i].dis = lower_bound(b+1, b+1+q, p[i].dis)-b;
}
for(int i = 1 ; i <= num ; ++i){
int pos = upper_bound(b+1, b+1+q, 2ll*p[i].mx-b[p[i].dis]+a[u])-b;
ans += sum(q) - sum(pos-1);
ad(p[i].dis, 1);
}
for(int i = 1 ; i <= num ; ++i){
ad(p[i].dis, -1);
}
for(int i = h[u] ; i != -1 ; i = e[i].next){
int v = e[i].to;
if(vis[v]) continue;
num = 0;
dis[v] = a[u]+a[v];
mx[v] = max(a[u], a[v]);
getdis(v, u);
sort(p+1, p+1+num);
b[num+1] = INF;
sort(b+1, b+1+num+1);
q = unique(b+1, b+1+num+1)-b-1;
for(int j = 1 ; j <= num ; ++j) {
p[j].dis = lower_bound(b+1, b+1+q, p[j].dis)-b;
}
for(int j = 1 ; j <= num ; ++j){
int pos = upper_bound(b+1, b+1+q, 2ll*p[j].mx-b[p[j].dis]+a[u])-b;
ans -= sum(q) - sum(pos-1);
ad(p[j].dis, 1);
}
for(int j = 1 ; j <= num ; ++j){
ad(p[j].dis, -1);
}
}
}
void divi(int u){
calc(u);
vis[u] = 1;
for(int i = h[u] ; i != -1 ; i = e[i].next){
int v = e[i].to;
if(vis[v]) continue;
maxson = 1000000007, tot = sz[v];
getrt(v, u);
divi(rt);
}
}
void solve(){
maxson = 1000000007, tot = n;
getrt(1, 0);
divi(rt);
}
ll read(){ ll s = 0, f = 1; char ch = getchar(); while(ch < '0' || ch > '9'){ if(ch == '-') f = -1; ch = getchar(); } while(ch >= '0' && ch <= '9'){ s = s * 10 + ch - '0'; ch = getchar(); } return s * f; }
int main(){
T = read();
while(T--){
ans = 0;
memset(h, -1, sizeof(h));
n = read();
for(int i = 1 ; i <= n ; ++i) vis[i] = 0;
for(int i = 1 ; i <= n ; ++i) a[i] = read();
int u, v;
for(int i = 1 ; i < n ; ++i){
u = read(), v = read();
add(u, v); add(v, u);
}
solve();
printf("%lld\n", ans);
}
return 0;
}