零基础入门深度学习(6) - 长短时记忆网络(LSTM)

往期回顾

在上一篇文章中,我们介绍了循环神经网络以及它的训练算法。我们也介绍了循环神经网络很难训练的原因,这导致了它在实际应用中,很难处理长距离的依赖。在本文中,我们将介绍一种改进之后的循环神经网络:长短时记忆网络(Long Short Term Memory Network, LSTM),它成功的解决了原始循环神经网络的缺陷,成为当前最流行的RNN,在语音识别、图片描述、自然语言处理等许多领域中成功应用。但不幸的一面是,LSTM的结构很复杂,因此,我们需要花上一些力气,才能把LSTM以及它的训练算法弄明白。在搞清楚LSTM之后,我们再介绍一种LSTM的变体:GRU (Gated Recurrent Unit)。 它的结构比LSTM简单,而效果却和LSTM一样好,因此,它正在逐渐流行起来。最后,我们仍然会动手实现一个LSTM。

 

长短时记忆网络是啥

我们首先了解一下长短时记忆网络产生的背景。回顾一下零基础入门深度学习(5) - 循环神经网络中推导的,误差项沿时间反向传播的公式:

 

 

 

 

我们可以根据下面的不等式,来获取的模的上界(模可以看做对中每一项值的大小的度量):

 

 

 

 

我们可以看到,误差项从t时刻传递到k时刻,其值的上界是的指数函数。分别是对角矩阵和矩阵W模的上界。显然,除非乘积的值位于1附近,否则,当t-k很大时(也就是误差传递很多个时刻时),整个式子的值就会变得极小(当乘积小于1)或者极大(当乘积大于1),前者就是梯度消失,后者就是梯度爆炸。虽然科学家们搞出了很多技巧(比如怎样初始化权重),让的值尽可能贴近于1,终究还是难以抵挡指数函数的威力。

梯度消失到底意味着什么?在零基础入门深度学习(5) - 循环神经网络中我们已证明,权重数组W最终的梯度是各个时刻的梯度之和,即:

 

 

 

 

假设某轮训练中,各时刻的梯度以及最终的梯度之和如下图:

我们就可以看到,从上图的t-3时刻开始,梯度已经几乎减少到0了。那么,从这个时刻开始再往之前走,得到的梯度(几乎为零)就不会对最终的梯度值有任何贡献,这就相当于无论t-3时刻之前的网络状态h是什么,在训练中都不会对权重数组W的更新产生影响,也就是网络事实上已经忽略了t-3时刻之前的状态。这就是原始RNN无法处理长距离依赖的原因。

既然找到了问题的原因,那么我们就能解决它。从问题的定位到解决,科学家们大概花了7、8年时间。终于有一天,Hochreiter和Schmidhuber两位科学家发明出长短时记忆网络,一举解决这个问题。

其实,长短时记忆网络的思路比较简单。原始RNN的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。那么,假如我们再增加一个状态,即c,让它来保存长期的状态,那么问题不就解决了么?如下图所示:

新增加的状态c,称为单元状态(cell state)。我们把上图按照时间维度展开:

上图仅仅是一个示意图,我们可以看出,在t时刻,LSTM的输入有三个:当前时刻网络的输入值、上一时刻LSTM的输出值、以及上一时刻的单元状态;LSTM的输出有两个:当前时刻LSTM输出值、和当前时刻的单元状态。注意都是向量。

LSTM的关键,就是怎样控制长期状态c。在这里,LSTM的思路是使用三个控制开关。第一个开关,负责控制继续保存长期状态c;第二个开关,负责控制把即时状态输入到长期状态c;第三个开关,负责控制是否把长期状态c作为当前的LSTM的输出。三个开关的作用如下图所示:

接下来,我们要描述一下,输出h和单元状态c的具体计算方法。

 

长短时记忆网络的前向计算

前面描述的开关是怎样在算法中实现的呢?这就用到了门(gate)的概念。门实际上就是一层全连接层,它的输入是一个向量,输出是一个0到1之间的实数向量。假设W是门的权重向量,是偏置项,那么门可以表示为:

 

 

 

 

门的使用,就是用门的输出向量按元素乘以我们需要控制的那个向量。因为门的输出是0到1之间的实数向量,那么,当门输出为0时,任何向量与之相乘都会得到0向量,这就相当于啥都不能通过;输出为1时,任何向量与之相乘都不会有任何改变,这就相当于啥都可以通过。因为(也就是sigmoid函数)的值域是(0,1),所以门的状态都是半开半闭的。

LSTM用两个门来控制单元状态c的内容,一个是遗忘门(forget gate),它决定了上一时刻的单元状态有多少保留到当前时刻;另一个是输入门(input gate),它决定了当前时刻网络的输入有多少保存到单元状态。LSTM用输出门(output gate)来控制单元状态有多少输出到LSTM的当前输出值

我们先来看一下遗忘门:

 

 

 

上式中,是遗忘门的权重矩阵,表示把两个向量连接成一个更长的向量,是遗忘门的偏置项,是sigmoid函数。如果输入的维度是,隐藏层的维度是,单元状态的维度是(通常),则遗忘门的权重矩阵维度是。事实上,权重矩阵都是两个矩阵拼接而成的:一个是,它对应着输入项,其维度为;一个是,它对应着输入项,其维度为可以写为:

 

 

 

 

下图显示了遗忘门的计算:

接下来看看输入门:

 

 

 

上式中,是输入门的权重矩阵,是输入门的偏置项。下图表示了输入门的计算:

接下来,我们计算用于描述当前输入的单元状态,它是根据上一次的输出和本次输入来计算的:

 

 

 

下图是的计算:

现在,我们计算当前时刻的单元状态。它是由上一次的单元状态按元素乘以遗忘门,再用当前输入的单元状态按元素乘以输入门,再将两个积加和产生的:

 

 

 

符号表示按元素乘。下图是的计算:

这样,我们就把LSTM关于当前的记忆和长期的记忆组合在一起,形成了新的单元状态。由于遗忘门的控制,它可以保存很久很久之前的信息,由于输入门的控制,它又可以避免当前无关紧要的内容进入记忆。下面,我们要看看输出门,它控制了长期记忆对当前输出的影响:

 

 

 

下图表示输出门的计算:

LSTM最终的输出,是由输出门和单元状态共同确定的:

 

 

 

下图表示LSTM最终输出的计算:

式1到式6就是LSTM前向计算的全部公式。至此,我们就把LSTM前向计算讲完了。

 

长短时记忆网络的训练

熟悉我们这个系列文章的同学都清楚,训练部分往往比前向计算部分复杂多了。LSTM的前向计算都这么复杂,那么,可想而知,它的训练算法一定是非常非常复杂的。现在只有做几次深呼吸,再一头扎进公式海洋吧。

 

LSTM训练算法框架

LSTM的训练算法仍然是反向传播算法,对于这个算法,我们已经非常熟悉了。主要有下面三个步骤:

  1. 前向计算每个神经元的输出值,对于LSTM来说,即五个向量的值。计算方法已经在上一节中描述过了。
  2. 反向计算每个神经元的误差项值。与循环神经网络一样,LSTM误差项的反向传播也是包括两个方向:一个是沿时间的反向传播,即从当前t时刻开始,计算每个时刻的误差项;一个是将误差项向上一层传播。
  3. 根据相应的误差项,计算每个权重的梯度。
 

关于公式和符号的说明

首先,我们对推导中用到的一些公式、符号做一下必要的说明。

接下来的推导中,我们设定gate的激活函数为sigmoid函数,输出的激活函数为tanh函数。他们的导数分别为:

 

 

 

 

从上面可以看出,sigmoid和tanh函数的导数都是原函数的函数。这样,我们一旦计算原函数的值,就可以用它来计算出导数的值。

LSTM需要学习的参数共有8组,分别是:遗忘门的权重矩阵和偏置项、输入门的权重矩阵和偏置项、输出门的权重矩阵和偏置项,以及计算单元状态的权重矩阵和偏置项。因为权重矩阵的两部分在反向传播中使用不同的公式,因此在后续的推导中,权重矩阵都将被写为分开的两个矩阵:

我们解释一下按元素乘符号。当作用于两个向量时,运算如下:

 

 

 

 

作用于一个向量和一个矩阵时,运算如下:

 

 

 

 

作用于两个矩阵时,两个矩阵对应位置的元素相乘。按元素乘可以在某些情况下简化矩阵和向量运算。例如,当一个对角矩阵右乘一个矩阵时,相当于用对角矩阵的对角线组成的向量按元素乘那个矩阵:

 

 

 

 

当一个行向量右乘一个对角矩阵时,相当于这个行向量按元素乘那个矩阵对角线组成的向量:

 

 

 

 

上面这两点,在我们后续推导中会多次用到。

在t时刻,LSTM的输出值为。我们定义t时刻的误差项为:

 

 

 

 

注意,和前面几篇文章不同,我们这里假设误差项是损失函数对输出值的导数,而不是对加权输入的导数。因为LSTM有四个加权输入,分别对应,我们希望往上一层传递一个误差项而不是四个。但我们仍然需要定义出这四个加权输入,以及他们对应的误差项。

 

 

 

 

 

误差项沿时间的反向传递

沿时间反向传递误差项,就是要计算出t-1时刻的误差项

 

 

 

 

我们知道,是一个Jacobian矩阵。如果隐藏层h的维度是N的话,那么它就是一个矩阵。为了求出它,我们列出的计算公式,即前面的式6和式4:

 

 

 

 

显然,都是的函数,那么,利用全导数公式可得:

 

 

 

下面,我们要把式7中的每个偏导数都求出来。根据式6,我们可以求出:

 

 

 

 

根据式4,我们可以求出:

 

 

 

 

因为:

 

 

 

 

我们很容易得出:

 

 

 

 

将上述偏导数带入到式7,我们得到:

 

 

 

根据的定义,可知:

 

 

式式式式

 

式8到式12就是将误差沿时间反向传播一个时刻的公式。有了它,我们可以写出将误差项向前传递到任意k时刻的公式:

 

 

 

 

将误差项传递到上一层

我们假设当前为第l层,定义l-1层的误差项是误差函数对l-1层加权输入的导数,即:

 

 

 

 

本次LSTM的输入由下面的公式计算:

 

 

 

 

上式中,表示第l-1层的激活函数。

因为都是的函数,又是的函数,因此,要求出E对的导数,就需要使用全导数公式:

 

 

 

式14就是将误差传递到上一层的公式。

 

权重梯度的计算

对于的权重梯度,我们知道它的梯度是各个时刻梯度之和(证明过程请参考文章零基础入门深度学习(5) - 循环神经网络),我们首先求出它们在t时刻的梯度,然后再求出他们最终的梯度。

我们已经求得了误差项,很容易求出t时刻的、的、的、的

 

 

 

 

将各个时刻的梯度加在一起,就能得到最终的梯度:

 

 

 

 

对于偏置项的梯度,也是将各个时刻的梯度加在一起。下面是各个时刻的偏置项梯度:

 

 

 

 

下面是最终的偏置项梯度,即将各个时刻的偏置项梯度加在一起:

 

 

 

 

对于的权重梯度,只需要根据相应的误差项直接计算即可:

 

 

 

 

以上就是LSTM的训练算法的全部公式。因为这里面存在很多重复的模式,仔细看看,会发觉并不是太复杂。

当然,LSTM存在着相当多的变体,读者可以在互联网上找到很多资料。因为大家已经熟悉了基本LSTM的算法,因此理解这些变体比较容易,因此本文就不再赘述了。

 

长短时记忆网络的实现

完整代码请参考GitHub: https://github.com/hanbt/learn_dl/blob/master/lstm.py (python2.7)

在下面的实现中,LSTMLayer的参数包括输入维度、输出维度、隐藏层维度,单元状态维度等于隐藏层维度。gate的激活函数为sigmoid函数,输出的激活函数为tanh。

 

激活函数的实现

我们先实现两个激活函数:sigmoid和tanh。

 
  1. class SigmoidActivator(object):
  2. def forward(self, weighted_input):
  3. return 1.0 / (1.0 + np.exp(-weighted_input))
  4. def backward(self, output):
  5. return output * (1 - output)
  6. class TanhActivator(object):
  7. def forward(self, weighted_input):
  8. return 2.0 / (1.0 + np.exp(-2 * weighted_input)) - 1.0
  9. def backward(self, output):
  10. return 1 - output * output
 

LSTM初始化

和前两篇文章代码架构一样,我们把LSTM的实现放在LstmLayer类中。

根据LSTM前向计算和方向传播算法,我们需要初始化一系列矩阵和向量。这些矩阵和向量有两类用途,一类是用于保存模型参数,例如;另一类是保存各种中间计算结果,以便于反向传播算法使用,它们包括,以及各个权重对应的梯度。

在构造函数的初始化中,只初始化了与forward计算相关的变量,与backward相关的变量没有初始化。这是因为构造LSTM对象的时候,我们还不知道它未来是用于训练(既有forward又有backward)还是推理(只有forward)。

 
  1. class LstmLayer(object):
  2. def __init__(self, input_width, state_width,
  3. learning_rate):
  4. self.input_width = input_width
  5. self.state_width = state_width
  6. self.learning_rate = learning_rate
  7. # 门的激活函数
  8. self.gate_activator = SigmoidActivator()
  9. # 输出的激活函数
  10. self.output_activator = TanhActivator()
  11. # 当前时刻初始化为t0
  12. self.times = 0
  13. # 各个时刻的单元状态向量c
  14. self.c_list = self.init_state_vec()
  15. # 各个时刻的输出向量h
  16. self.h_list = self.init_state_vec()
  17. # 各个时刻的遗忘门f
  18. self.f_list = self.init_state_vec()
  19. # 各个时刻的输入门i
  20. self.i_list = self.init_state_vec()
  21. # 各个时刻的输出门o
  22. self.o_list = self.init_state_vec()
  23. # 各个时刻的即时状态c~
  24. self.ct_list = self.init_state_vec()
  25. # 遗忘门权重矩阵Wfh, Wfx, 偏置项bf
  26. self.Wfh, self.Wfx, self.bf = (
  27. self.init_weight_mat())
  28. # 输入门权重矩阵Wfh, Wfx, 偏置项bf
  29. self.Wih, self.Wix, self.bi = (
  30. self.init_weight_mat())
  31. # 输出门权重矩阵Wfh, Wfx, 偏置项bf
  32. self.Woh, self.Wox, self.bo = (
  33. self.init_weight_mat())
  34. # 单元状态权重矩阵Wfh, Wfx, 偏置项bf
  35. self.Wch, self.Wcx, self.bc = (
  36. self.init_weight_mat())
  37. def init_state_vec(self):
  38. '''
  39. 初始化保存状态的向量
  40. '''
  41. state_vec_list = []
  42. state_vec_list.append(np.zeros(
  43. (self.state_width, 1)))
  44. return state_vec_list
  45. def init_weight_mat(self):
  46. '''
  47. 初始化权重矩阵
  48. '''
  49. Wh = np.random.uniform(-1e-4, 1e-4,
  50. (self.state_width, self.state_width))
  51. Wx = np.random.uniform(-1e-4, 1e-4,
  52. (self.state_width, self.input_width))
  53. b = np.zeros((self.state_width, 1))
  54. return Wh, Wx, b
 

前向计算的实现

forward方法实现了LSTM的前向计算:

 
  1. def forward(self, x):
  2. '''
  3. 根据式1-式6进行前向计算
  4. '''
  5. self.times += 1
  6. # 遗忘门
  7. fg = self.calc_gate(x, self.Wfx, self.Wfh,
  8. self.bf, self.gate_activator)
  9. self.f_list.append(fg)
  10. # 输入门
  11. ig = self.calc_gate(x, self.Wix, self.Wih,
  12. self.bi, self.gate_activator)
  13. self.i_list.append(ig)
  14. # 输出门
  15. og = self.calc_gate(x, self.Wox, self.Woh,
  16. self.bo, self.gate_activator)
  17. self.o_list.append(og)
  18. # 即时状态
  19. ct = self.calc_gate(x, self.Wcx, self.Wch,
  20. self.bc, self.output_activator)
  21. self.ct_list.append(ct)
  22. # 单元状态
  23. c = fg * self.c_list[self.times - 1] + ig * ct
  24. self.c_list.append(c)
  25. # 输出
  26. h = og * self.output_activator.forward(c)
  27. self.h_list.append(h)
  28. def calc_gate(self, x, Wx, Wh, b, activator):
  29. '''
  30. 计算门
  31. '''
  32. h = self.h_list[self.times - 1] # 上次的LSTM输出
  33. net = np.dot(Wh, h) + np.dot(Wx, x) + b
  34. gate = activator.forward(net)
  35. return gate

从上面的代码我们可以看到,门的计算都是相同的算法,而门和的计算仅仅是激活函数不同。因此我们提出了calc_gate方法,这样减少了很多重复代码。

 

反向传播算法的实现

backward方法实现了LSTM的反向传播算法。需要注意的是,与backword相关的内部状态变量是在调用backward方法之后才初始化的。这种延迟初始化的一个好处是,如果LSTM只是用来推理,那么就不需要初始化这些变量,节省了很多内存。

 
  1. def backward(self, x, delta_h, activator):
  2. '''
  3. 实现LSTM训练算法
  4. '''
  5. self.calc_delta(delta_h, activator)
  6. self.calc_gradient(x)

算法主要分成两个部分,一部分使计算误差项:

 
  1. def calc_delta(self, delta_h, activator):
  2. # 初始化各个时刻的误差项
  3. self.delta_h_list = self.init_delta() # 输出误差项
  4. self.delta_o_list = self.init_delta() # 输出门误差项
  5. self.delta_i_list = self.init_delta() # 输入门误差项
  6. self.delta_f_list = self.init_delta() # 遗忘门误差项
  7. self.delta_ct_list = self.init_delta() # 即时输出误差项
  8. # 保存从上一层传递下来的当前时刻的误差项
  9. self.delta_h_list[-1] = delta_h
  10. # 迭代计算每个时刻的误差项
  11. for k in range(self.times, 0, -1):
  12. self.calc_delta_k(k)
  13. def init_delta(self):
  14. '''
  15. 初始化误差项
  16. '''
  17. delta_list = []
  18. for i in range(self.times + 1):
  19. delta_list.append(np.zeros(
  20. (self.state_width, 1)))
  21. return delta_list
  22. def calc_delta_k(self, k):
  23. '''
  24. 根据k时刻的delta_h,计算k时刻的delta_f、
  25. delta_i、delta_o、delta_ct,以及k-1时刻的delta_h
  26. '''
  27. # 获得k时刻前向计算的值
  28. ig = self.i_list[k]
  29. og = self.o_list[k]
  30. fg = self.f_list[k]
  31. ct = self.ct_list[k]
  32. c = self.c_list[k]
  33. c_prev = self.c_list[k-1]
  34. tanh_c = self.output_activator.forward(c)
  35. delta_k = self.delta_h_list[k]
  36. # 根据式9计算delta_o
  37. delta_o = (delta_k * tanh_c *
  38. self.gate_activator.backward(og))
  39. delta_f = (delta_k * og *
  40. (1 - tanh_c * tanh_c) * c_prev *
  41. self.gate_activator.backward(fg))
  42. delta_i = (delta_k * og *
  43. (1 - tanh_c * tanh_c) * ct *
  44. self.gate_activator.backward(ig))
  45. delta_ct = (delta_k * og *
  46. (1 - tanh_c * tanh_c) * ig *
  47. self.output_activator.backward(ct))
  48. delta_h_prev = (
  49. np.dot(delta_o.transpose(), self.Woh) +
  50. np.dot(delta_i.transpose(), self.Wih) +
  51. np.dot(delta_f.transpose(), self.Wfh) +
  52. np.dot(delta_ct.transpose(), self.Wch)
  53. ).transpose()
  54. # 保存全部delta值
  55. self.delta_h_list[k-1] = delta_h_prev
  56. self.delta_f_list[k] = delta_f
  57. self.delta_i_list[k] = delta_i
  58. self.delta_o_list[k] = delta_o
  59. self.delta_ct_list[k] = delta_ct

另一部分是计算梯度:

 
  1. def calc_gradient(self, x):
  2. # 初始化遗忘门权重梯度矩阵和偏置项
  3. self.Wfh_grad, self.Wfx_grad, self.bf_grad = (
  4. self.init_weight_gradient_mat())
  5. # 初始化输入门权重梯度矩阵和偏置项
  6. self.Wih_grad, self.Wix_grad, self.bi_grad = (
  7. self.init_weight_gradient_mat())
  8. # 初始化输出门权重梯度矩阵和偏置项
  9. self.Woh_grad, self.Wox_grad, self.bo_grad = (
  10. self.init_weight_gradient_mat())
  11. # 初始化单元状态权重梯度矩阵和偏置项
  12. self.Wch_grad, self.Wcx_grad, self.bc_grad = (
  13. self.init_weight_gradient_mat())
  14. # 计算对上一次输出h的权重梯度
  15. for t in range(self.times, 0, -1):
  16. # 计算各个时刻的梯度
  17. (Wfh_grad, bf_grad,
  18. Wih_grad, bi_grad,
  19. Woh_grad, bo_grad,
  20. Wch_grad, bc_grad) = (
  21. self.calc_gradient_t(t))
  22. # 实际梯度是各时刻梯度之和
  23. self.Wfh_grad += Wfh_grad
  24. self.bf_grad += bf_grad
  25. self.Wih_grad += Wih_grad
  26. self.bi_grad += bi_grad
  27. self.Woh_grad += Woh_grad
  28. self.bo_grad += bo_grad
  29. self.Wch_grad += Wch_grad
  30. self.bc_grad += bc_grad
  31. print '-----%d-----' % t
  32. print Wfh_grad
  33. print self.Wfh_grad
  34. # 计算对本次输入x的权重梯度
  35. xt = x.transpose()
  36. self.Wfx_grad = np.dot(self.delta_f_list[-1], xt)
  37. self.Wix_grad = np.dot(self.delta_i_list[-1], xt)
  38. self.Wox_grad = np.dot(self.delta_o_list[-1], xt)
  39. self.Wcx_grad = np.dot(self.delta_ct_list[-1], xt)
  40. def init_weight_gradient_mat(self):
  41. '''
  42. 初始化权重矩阵
  43. '''
  44. Wh_grad = np.zeros((self.state_width,
  45. self.state_width))
  46. Wx_grad = np.zeros((self.state_width,
  47. self.input_width))
  48. b_grad = np.zeros((self.state_width, 1))
  49. return Wh_grad, Wx_grad, b_grad
  50. def calc_gradient_t(self, t):
  51. '''
  52. 计算每个时刻t权重的梯度
  53. '''
  54. h_prev = self.h_list[t-1].transpose()
  55. Wfh_grad = np.dot(self.delta_f_list[t], h_prev)
  56. bf_grad = self.delta_f_list[t]
  57. Wih_grad = np.dot(self.delta_i_list[t], h_prev)
  58. bi_grad = self.delta_f_list[t]
  59. Woh_grad = np.dot(self.delta_o_list[t], h_prev)
  60. bo_grad = self.delta_f_list[t]
  61. Wch_grad = np.dot(self.delta_ct_list[t], h_prev)
  62. bc_grad = self.delta_ct_list[t]
  63. return Wfh_grad, bf_grad, Wih_grad, bi_grad, \
  64. Woh_grad, bo_grad, Wch_grad, bc_grad
 

梯度下降算法的实现

下面是用梯度下降算法来更新权重:

 
  1. def update(self):
  2. '''
  3. 按照梯度下降,更新权重
  4. '''
  5. self.Wfh -= self.learning_rate * self.Whf_grad
  6. self.Wfx -= self.learning_rate * self.Whx_grad
  7. self.bf -= self.learning_rate * self.bf_grad
  8. self.Wih -= self.learning_rate * self.Whi_grad
  9. self.Wix -= self.learning_rate * self.Whi_grad
  10. self.bi -= self.learning_rate * self.bi_grad
  11. self.Woh -= self.learning_rate * self.Wof_grad
  12. self.Wox -= self.learning_rate * self.Wox_grad
  13. self.bo -= self.learning_rate * self.bo_grad
  14. self.Wch -= self.learning_rate * self.Wcf_grad
  15. self.Wcx -= self.learning_rate * self.Wcx_grad
  16. self.bc -= self.learning_rate * self.bc_grad
 

梯度检查的实现

和RecurrentLayer一样,为了支持梯度检查,我们需要支持重置内部状态:

 
  1. def reset_state(self):
  2. # 当前时刻初始化为t0
  3. self.times = 0
  4. # 各个时刻的单元状态向量c
  5. self.c_list = self.init_state_vec()
  6. # 各个时刻的输出向量h
  7. self.h_list = self.init_state_vec()
  8. # 各个时刻的遗忘门f
  9. self.f_list = self.init_state_vec()
  10. # 各个时刻的输入门i
  11. self.i_list = self.init_state_vec()
  12. # 各个时刻的输出门o
  13. self.o_list = self.init_state_vec()
  14. # 各个时刻的即时状态c~
  15. self.ct_list = self.init_state_vec()

最后,是梯度检查的代码:

 
  1. def data_set():
  2. x = [np.array([[1], [2], [3]]),
  3. np.array([[2], [3], [4]])]
  4. d = np.array([[1], [2]])
  5. return x, d
  6. def gradient_check():
  7. '''
  8. 梯度检查
  9. '''
  10. # 设计一个误差函数,取所有节点输出项之和
  11. error_function = lambda o: o.sum()
  12. lstm = LstmLayer(3, 2, 1e-3)
  13. # 计算forward值
  14. x, d = data_set()
  15. lstm.forward(x[0])
  16. lstm.forward(x[1])
  17. # 求取sensitivity map
  18. sensitivity_array = np.ones(lstm.h_list[-1].shape,
  19. dtype=np.float64)
  20. # 计算梯度
  21. lstm.backward(x[1], sensitivity_array, IdentityActivator())
  22. # 检查梯度
  23. epsilon = 10e-4
  24. for i in range(lstm.Wfh.shape[0]):
  25. for j in range(lstm.Wfh.shape[1]):
  26. lstm.Wfh[i,j] += epsilon
  27. lstm.reset_state()
  28. lstm.forward(x[0])
  29. lstm.forward(x[1])
  30. err1 = error_function(lstm.h_list[-1])
  31. lstm.Wfh[i,j] -= 2*epsilon
  32. lstm.reset_state()
  33. lstm.forward(x[0])
  34. lstm.forward(x[1])
  35. err2 = error_function(lstm.h_list[-1])
  36. expect_grad = (err1 - err2) / (2 * epsilon)
  37. lstm.Wfh[i,j] += epsilon
  38. print 'weights(%d,%d): expected - actural %.4e - %.4e' % (
  39. i, j, expect_grad, lstm.Wfh_grad[i,j])
  40. return lstm

我们只对做了检查,读者可以自行增加对其他梯度的检查。下面是某次梯度检查的结果:

 

GRU

前面我们讲了一种普通的LSTM,事实上LSTM存在很多变体,许多论文中的LSTM都或多或少的不太一样。在众多的LSTM变体中,GRU (Gated Recurrent Unit)也许是最成功的一种。它对LSTM做了很多简化,同时却保持着和LSTM相同的效果。因此,GRU最近变得越来越流行。

GRU对LSTM做了两个大改动:

  1. 将输入门、遗忘门、输出门变为两个门:更新门(Update Gate)和重置门(Reset Gate)
  2. 将单元状态与输出合并为一个状态:

GRU的前向计算公式为:

 

 

 

 

下图是GRU的示意图:

GRU的训练算法比LSTM简单一些,留给读者自行推导,本文就不再赘述了。

 

小结

至此,LSTM——也许是结构最复杂的一类神经网络——就讲完了,相信拿下前几篇文章的读者们搞定这篇文章也不在话下吧!现在我们已经了解循环神经网络和它最流行的变体——LSTM,它们都可以用来处理序列。但是,有时候仅仅拥有处理序列的能力还不够,还需要处理比序列更为复杂的结构(比如树结构),这时候就需要用到另外一类网络:递归神经网络(Recursive Neural Network),巧合的是,它的缩写也是RNN。在下一篇文章中,我们将介绍递归神经网络和它的训练算法。现在,漫长的烧脑暂告一段落,休息一下吧:)

 

参考资料

  1. CS224d: Deep Learning for Natural Language Processing
  2. Understanding LSTM Networks
  3. LSTM Forward and Backward Pass
  4. 转载自:https://zybuluo.com/hanbingtao/note/581764
posted @ 2018-08-17 11:19  兔六哥  阅读(1076)  评论(0编辑  收藏  举报