word2vec
Word2vec,是一群用来产生词向量的相关模型。这些模型为浅而双层的神经网络,用来训练以重新建构语言学之词文本。网络以词表现,并且需猜测相邻位置的输入词,在word2vec中词袋模型假设下,词的顺序是不重要的。训练完成之后,word2vec模型可用来映射每个词到一个向量,可用来表示词对词之间的关系,该向量为神经网络之隐藏层。
Word Embedding:将「不可计算」「非结构化」的词转化为「可计算」「结构化」的向量。
Word2vec 是 Word Embedding 方式之一,属于 NLP 领域。这种方式在 2018 年之前比较主流,但是随着 BERT、GPT2.0 的出现,这种方式已经不算效果最好的方法了。
Word2vec 是 2013 年由谷歌的 Mikolov 提出的一套新的词嵌入方法。
Word2vec 的 2 种训练模式
CBOW(Continuous Bag-of-Words Model)和Skip-gram (Continuous Skip-gram Model),是Word2vec 的两种训练模式。
CBOW
通过上下文来预测当前值。相当于一句话中扣掉一个词,让你猜这个词是什么。
Skip-gram
用当前词来预测上下文。相当于给你一个词,让你猜前面和后面可能出现什么词。
优化方法
为了提高速度,Word2vec 经常采用 2 种加速方式:
- Negative Sample(负采样)
- Hierarchical Softmax
优点:
- 由于 Word2vec 会考虑上下文,跟之前的 Embedding 方法相比,效果要更好(但不如 18 年之后的方法)
- 比之前的 Embedding方 法维度更少,所以速度更快
- 通用性很强,可以用在各种 NLP 任务中
缺点:
- 由于词和向量是一对一的关系,所以多义词的问题无法解决。
- Word2vec 是一种静态的方式,虽然通用性强,但是无法针对特定任务做动态优化
参考资料:
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 记一次.NET内存居高不下排查解决与启示