python 图像处理中数组常用语法(Common syntax for arrays in image processing)

 

在用 python 进行图像处理的时候,为了提高执行效率,必定会用到 numpy 数据类型,以下介绍了图像处理中 numpy 中常用的语法,希望对大家有帮助。

1. numpy 倒置数组(第一个值到最后一个值,最后一个值到第一个值)

复制代码
In [2]: a = np.random.randint(0, 20, (6, 2))

In [3]: a
Out[3]:
array([[ 8, 16],
       [16, 13],
       [12,  4],
       [13,  7],
       [ 7,  6],
       [ 6,  3]])

In [4]: a[::-1]
Out[4]:
array([[ 6,  3],
       [ 7,  6],
       [13,  7],
       [12,  4],
       [16, 13],
       [ 8, 16]])
复制代码

 

2. numpy 对调 x 和 y 坐标的顺序

复制代码
In [7]: a = np.random.randint(0, 20, (6, 2))

In [8]: a
Out[8]:
array([[11, 19],
       [17, 15],
       [ 8, 14],
       [15, 12],
       [17,  6],
       [ 9,  3]])

In [9]: a[:, ::-1]
Out[9]:
array([[19, 11],
       [15, 17],
       [14,  8],
       [12, 15],
       [ 6, 17],
       [ 3,  9]])
复制代码

 

3. 列表中的数组合成一个数组

复制代码
In [22]: a = np.random.randint(0, 20, (3, 2, 2))

In [23]: a
Out[23]:
array([[[10,  9],
        [15, 10]],

       [[ 5, 18],
        [ 5,  7]],

       [[15, 10],
        [ 0, 13]]])

In [24]: b=[a[0],a[1][::-1],a[2]]

In [25]: b
Out[25]:
[array([[10,  9],
        [15, 10]]),
 array([[ 5,  7],
        [ 5, 18]]),
 array([[15, 10],
        [ 0, 13]])]

In [26]: np.vstack(b)
Out[26]:
array([[10,  9],
       [15, 10],
       [ 5,  7],
       [ 5, 18],
       [15, 10],
       [ 0, 13]])
复制代码

 

4. 数组增加一个维度(2种方法:方法1:使用 np.expand_dims 函数(推荐);方法2:使用 reshape 函数)

复制代码
In [2]: a = np.random.randint(0, 30, (5, 2))

In [3]: a
Out[3]:
array([[24, 27],
       [ 9,  2],
       [20, 12],
       [23, 26],
       [27,  4]])

In [4]: a.shape
Out[4]: (5, 2)

In [5]: b = np.expand_dims(a, 1)

In [6]: b
Out[6]:
array([[[24, 27]],

       [[ 9,  2]],

       [[20, 12]],

       [[23, 26]],

       [[27,  4]]])

In [7]: b.shape
Out[7]: (5, 1, 2)

In [8]: c = a.reshape(5, 1, 2)

In [9]: c
Out[9]:
array([[[24, 27]],

       [[ 9,  2]],

       [[20, 12]],

       [[23, 26]],

       [[27,  4]]])

In [10]: c.shape
Out[10]: (5, 1, 2)
复制代码

 

未完待续~

posted @   ttweixiao9999  阅读(124)  评论(0编辑  收藏  举报
编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 三行代码完成国际化适配,妙~啊~
· .NET Core 中如何实现缓存的预热?
点击右上角即可分享
微信分享提示