用向量计算bp神经网络

# author: Roy.G

import numpy as np
import dataset
import plot_utils as pu

def sigmoid(x):
return 1/(1+np.exp(-x))

X,Y = dataset.get_beans(100)
print(X[1,:])
W=np.array([0.1,0.1])
B=np.array([0.1])
def forward_propgation (X):
Z=X.dot(W.T)+B
A=sigmoid(Z)
return A

for i in range(1000):
for i in range(100):
Xi=X[i,:]
y = Y[i]

a=forward_propgation(Xi)
e=(y-a)**2

de_da=-2*(y-a)
da_dz=a*(1-a)
dz_dw=Xi
dz_db=1

de_dw=de_da*da_dz*dz_dw
de_db=de_da*da_dz*dz_db

alpha=0.05
W=W-alpha*de_dw

b = B - alpha * de_db
# pre=forward_propgation(xs1,xs2)
pu.show_scatter_surface(X,Y,forward_propgation)

posted on   ttm6489  阅读(24)  评论(0编辑  收藏  举报

相关博文:
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

点击右上角即可分享
微信分享提示