3维,梯度下降算法

# author: Roy.G
import numpy as np
import dataset
import plot_utils as pu

def sigmoid(x):
return 1/(1+np.exp(-x))

xs,ys = dataset.get_beans(100)

w1 = 0.1
w2 = 0.1
b = 0.1
xs1=xs[:,0]
xs2=xs[:,1]
def forward_propgation (xs1,xs2):
z=w1*xs1+w2*xs2+b
a=sigmoid(z)
return a

for i in range(1000):
for i in range(100):
x1 = xs1[i]
x2 = xs2[i]
y = ys[i]

a=forward_propgation(x1,x2)
e=(y-a)**2

de_da=-2*(y-a)
da_dz=a*(1-a)
dz_dw1=x1
dz_dw2=x2
dz_db=1

de_dw1=de_da*da_dz*dz_dw1
de_dw2=de_da*da_dz*dz_dw2
de_db=de_da*da_dz*dz_db

alpha=0.05
w1=w1-alpha*de_dw1
w2 = w2 - alpha * de_dw2
b = b - alpha * de_db
# pre=forward_propgation(xs1,xs2)
pu.show_scatter_surface(xs,ys,forward_propgation)

posted on 2022-02-17 23:48  ttm6489  阅读(59)  评论(0编辑  收藏  举报

导航