MYSQL与HBASE对比

deb343855d710f5fa719b89d8703d734.png

程序员的成长之路

互联网/程序员/技术/资料共享 

关注

阅读本文大概需要 2.8 分钟。

作者:庄小焱

来源:https://blog.csdn.net/weixin_41605937/article/details/110933984

MySQL + HBase是我们日常应用中常用的两个数据库,分别解决应用的在线事务问题和大数据场景的海量存储问题。

# 从架构对比看差异

相比MySQL,HBase的架构特点:

1.完全分布式(数据分片、故障自恢复)

2.底层使用HDFS(存储计算分离)。

由架构看到的能力差异:

1. MySQL:运维简单(组件少)、延时低(访问路径短)

2.HBase:扩展性好、内置容错恢复与数据冗余

fc9343986c2ba0e27423ced9ef1fad87.png

64edad2fb5da85270277607e03e901b5.png

# 从引擎结构看差异

2af126d2456cd5f77d70a7b5070ecd05.png

608dc8aa5ec3155d994f5f45b3fd4c9b.png 相比MySQL,HBase的内部引擎特点:

1. HBase原生没有sQL引擎(无法使用sQL访问,使用APlI),云HBase增强版(Lindorm)及开源Phoenix均提供sQL能力

2.HBase使用LSM(Log-Structure Merge)树,,Innodb使用B+树。

036425ad675baa6b9da39cc2287f76a4.png

5d51c43be76758e27e407145d29e9558.png

由引擎结构(B+Tree vs LSM Tree)看到的能力差异:

1.MySQL:读写均衡、存在空间碎片

2. HBase:侧重于写、存储紧凑无浪费、Io放大、数据导入能力强

# 关于LSM树和B+树的理解

目的是为了减少磁盘IO,

索引:某种数据结构,方便查找数据

hash索引不利于范围查询,使用树结构

B+树

  • 从磁盘读数据是以页为单位,根据这个特点使用平衡多路查找树

  • B+树的非叶子节点存放索引,叶子节点存放数据

  • 非叶子节点能够存放更多的索引,树的高度更低

  • 叶子节点通过指针相连,有利于区间查询

  • 叶子节点和根节点的距离基本相同,查找的效率稳定

  • 数据插入导致叶子节点分裂,最终导致逻辑连续的数据存放到不同物理磁盘块位置,导致区间查询效率下降

LSM Tree

  • LSM(Log-Structured Merge),LevelDB,RocksDB,HBase,Cassandra等都是基于LSM结构

  • HDD,SSD顺序读写的速度都高于随机读写,写入日志就是顺序写

  • WAL,memtable,sstable

  • 有利于写,不利于读,先从memtable查找,再到磁盘所有的sstable文件查找

  • Compaction的目的是减少sstable文件数量,缓解读放大的问题,加速查找可以对sstable文件使用布隆过滤器

  • Compaction策略

    STCS(SIze-Tiered Compaction Strategy)空间放大和读放大问题

    LCS(Leveled Compaction Strategy)写放大问题

  • Compaction会引入写放大问题,在Value较大时采用KV分离存储缓解写放大

  • 写操作多于读操作时,LSM树有更好的性能,因为随着insert操作,为了维护B+树结构,节点分裂。读磁盘的随机读写概率会变大,性能会逐渐减弱。LSM树相比于B+树,多次单页随机写变成一次多页随机写,复用了磁盘寻道时间,极大提高写性能。不过付出代价就是放弃部分读性能。

# 数据访问

相同之处:数据以表的模型进行逻辑组织,应用对数据进行增删改查

不同之处:MySQL的SQL功能更丰富:事务能力更强,HBase既可以用APIl进行更灵活、性能更好的访问,也可以借助Phoenix使用标准sQL访问;只支持单行事务

HBase的特色功能--TTL

c793551186e16a8e6628697cff0c8b43.png

HBase的特色功能—多版本

710026dbe7797ab7b6b626096f0544c3.png

HBase的特色功能—多列簇

a5d395b690c34a330c95eb6341a62f86.png

 HBase的特色功能—MOB

1f1f36abfc1c66364166b8beac2728c4.png

 # 从生态看差异

MySQL:满足APP的在线数据库存储,一般有我足矣

86d801c25d7da98e9bf0a010f2c39ffc.png

大数据圈:应用于大数据场景的存储、计算及管理组件

b667504a72b6ec4cb2158664c31cb263.png

MySQL:一般可独立满足在线应用的数据存储需求,或者与少量组件配合(如缓存、分库中间件)

HBase:一般需要和较多大数据组件一起配合完成应用场景,场景架构的设计、实施存在较大的挑战

# 总结

6a05b276876bcef1e81c9c15621b716f.png

# 哪些场景的存储适合HBase ?

35e7eac0887e7afb62b607525d6670b7.png

0a69a3653b4e30668670e68309aba9de.png

d0cd2cf29e54d55ce8cbce88e947ffae.png

d6e6238f7e69846440374b1707173eb3.png

9596c761fc5a6579f116dd3548a82c3d.png

f2e5e221b09d51aced6609f85efe9570.png

4e7615d256f8af0b09dd9117cd47ce25.png

916ef94a516165e64f27082a1029ca32.png

8fda67f6e6dd91e9612de9b626893725.png

d3b5fa7da93a5a430cc488e7bd3b699f.png

8d01cfdf23bcb3af99ec8b30e8bcb180.png

 HBase不是MySQL的替换,HBase是业务规模及场景扩张后,对MySQL的自然延伸

194e96bdc2e83255232fd1db1e17d37e.png

posted on 2022-03-04 15:17  1450811640  阅读(173)  评论(0编辑  收藏  举报