# 1. 不同的命名空间。 import tensorflow as tf with tf.variable_scope("foo"): a = tf.get_variable("bar", [1]) print(a.name) with tf.variable_scope("bar"): b = tf.get_variable("bar", [1]) print(b.name)
# 2. tf.Variable和tf.get_variable的区别。 with tf.name_scope("a"): a = tf.Variable([1]) print(a.name) a = tf.get_variable("b", [1]) print(a.name)
# 3. TensorBoard可以根据命名空间来整理可视化效果图上的节点。 with tf.name_scope("input1"): input1 = tf.constant([1.0, 2.0, 3.0], name="input2") with tf.name_scope("input2"): input2 = tf.Variable(tf.random_uniform([3]), name="input2") output = tf.add_n([input1, input2], name="add") writer = tf.summary.FileWriter("F:\\temp\\simple_example.log", tf.get_default_graph()) writer.close()