import tensorflow as tf from numpy.random import RandomState batch_size = 8 w1= tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1)) w2= tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1)) x = tf.placeholder(tf.float32, shape=(None, 2), name="x-input") y_= tf.placeholder(tf.float32, shape=(None, 1), name='y-input') a = tf.matmul(x, w1) y = tf.matmul(a, w2) y = tf.sigmoid(y) cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)) + (1 - y_) * tf.log(tf.clip_by_value(1 - y, 1e-10, 1.0))) train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy) rdm = RandomState(1) X = rdm.rand(128,2) Y = [[int(x1+x2 < 1)] for (x1, x2) in X] with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) # 输出目前(未经训练)的参数取值。 print(sess.run(w1)) print(sess.run(w2)) print("\n") # 训练模型。 STEPS = 5000 for i in range(STEPS): start = (i*batch_size) % 128 end = (i*batch_size) % 128 + batch_size sess.run([train_step, y, y_], feed_dict={x: X[start:end], y_: Y[start:end]}) if i % 1000 == 0: total_cross_entropy = sess.run(cross_entropy, feed_dict={x: X, y_: Y}) print("After %d training step(s), cross entropy on all data is %g" % (i, total_cross_entropy)) # 输出训练后的参数取值。 print("\n") print(sess.run(w1)) print(sess.run(w2))