import os import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' batch_size = 128 # batch容量 display_step = 1 # 展示间隔 learning_rate = 0.01 # 学习率 training_epochs = 20 # 训练轮数,1轮等于n_samples/batch_size example_to_show = 10 # 展示图像数目 n_hidden1_units = 256 # 第一隐藏层 n_hidden2_units = 128 # 第二隐藏层 n_input_units = 784 n_output_units = n_input_units def WeightsVariable(n_in, n_out, name_str): return tf.Variable(tf.random_normal([n_in, n_out]), dtype=tf.float32, name=name_str) def biasesVariable(n_out, name_str): return tf.Variable(tf.random_normal([n_out]), dtype=tf.float32, name=name_str) def encoder(x_origin, activate_func=tf.nn.sigmoid): with tf.name_scope('Layer1'): Weights = WeightsVariable(n_input_units, n_hidden1_units, 'Weights') biases = biasesVariable(n_hidden1_units, 'biases') x_code1 = activate_func(tf.add(tf.matmul(x_origin, Weights), biases)) with tf.name_scope('Layer2'): Weights = WeightsVariable(n_hidden1_units, n_hidden2_units, 'Weights') biases = biasesVariable(n_hidden2_units, 'biases') x_code2 = activate_func(tf.add(tf.matmul(x_code1, Weights), biases)) return x_code2 def decode(x_code, activate_func=tf.nn.sigmoid): with tf.name_scope('Layer1'): Weights = WeightsVariable(n_hidden2_units, n_hidden1_units, 'Weights') biases = biasesVariable(n_hidden1_units, 'biases') x_decode1 = activate_func(tf.add(tf.matmul(x_code, Weights), biases)) with tf.name_scope('Layer2'): Weights = WeightsVariable(n_hidden1_units, n_output_units, 'Weights') biases = biasesVariable(n_output_units, 'biases') x_decode2 = activate_func(tf.add(tf.matmul(x_decode1, Weights), biases)) return x_decode2 with tf.Graph().as_default(): with tf.name_scope('Input'): X_input = tf.placeholder(tf.float32, [None, n_input_units]) with tf.name_scope('Encode'): X_code = encoder(X_input) with tf.name_scope('decode'): X_decode = decode(X_code) with tf.name_scope('loss'): loss = tf.reduce_mean(tf.pow(X_input - X_decode, 2)) with tf.name_scope('train'): Optimizer = tf.train.RMSPropOptimizer(learning_rate) train = Optimizer.minimize(loss) init = tf.global_variables_initializer() # 因为使用了tf.Graph.as_default()上下文环境 # 所以下面的记录必须放在上下文里面,否则记录下来的图是空的(get不到上面的default) writer = tf.summary.FileWriter(logdir='logsss', graph=tf.get_default_graph()) writer.flush() mnist = input_data.read_data_sets('E:\\MNIST_data\\', one_hot=True) with tf.Session() as sess: sess.run(init) total_batch = int(mnist.train.num_examples / batch_size) for epoch in range(training_epochs): for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) _, Loss = sess.run([train, loss], feed_dict={X_input: batch_xs}) Loss = sess.run(loss, feed_dict={X_input: batch_xs}) if epoch % display_step == 0: print('Epoch: %04d' % (epoch + 1), 'loss= ', '{:.9f}'.format(Loss)) writer.close() print('训练完毕!') '''比较输入和输出的图像''' # 输出图像获取 reconstructions = sess.run(X_decode, feed_dict={X_input: mnist.test.images[:example_to_show]}) # 画布建立 f, a = plt.subplots(2, 10, figsize=(10, 2)) for i in range(example_to_show): a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28))) a[1][i].imshow(np.reshape(reconstructions[i], (28, 28))) f.show() # 渲染图像 plt.draw() # 刷新图像 # plt.waitforbuttonpress()