#复诊 import sys import os import time import operator import cx_Oracle import numpy as np import pandas as pd import tensorflow as tf uid = 6 sql = "select username,sex,age,province,area,bumen,ke,result,chufang,jianyi,yiyuaan,yisheng,jianchaxiang,zhenduanriqi from zhenduanjilutable where userid=%d" % uid cursor.execute(sql) rows = cursor.fetchall() zhenduanjilu = [] for row in rows: temp = [] temp.append(row[0]) temp.append(row[1]) temp.append(row[2]) temp.append(row[3]) temp.append(row[4]) temp.append(row[5]) temp.append(row[6]) temp.append(row[7]) temp.append(row[8]) temp.append(row[9]) temp.append(row[10]) temp.append(row[11]) temp.append(row[12]) temp.append(row[13]) zhenduanjilu.append(temp) print("===================打印诊断历史记录=====================") for i in range(len(zhenduanjilu)): print("-------------->>第:"+str(i+1)+"次诊断<<-------------------") print(" 姓名:"+zhenduanjilu[i][0]) print(" 性别:"+zhenduanjilu[i][1]) print(" 年龄:"+str(zhenduanjilu[i][2])) print(" 省份:"+zhenduanjilu[i][3]) print(" 市区:"+zhenduanjilu[i][4]) print(" 门诊部门:"+zhenduanjilu[i][5]) print(" 门诊科目:"+zhenduanjilu[i][6]) print(" 诊断结果:"+zhenduanjilu[i][7]) print(" 医疗处方:"+zhenduanjilu[i][8]) print(" 养生建议:"+zhenduanjilu[i][9]) print(" 推荐医院:"+zhenduanjilu[i][10]) print(" 推荐医生:"+zhenduanjilu[i][11]) print(" 建议检查项:"+zhenduanjilu[i][12]) print(" 诊断日期:"+str(zhenduanjilu[i][13])) num = int(input("请输入需要复诊的对应第几次诊断记录编号:")) print("===================开始复诊流程=====================") num -= 1 username=zhenduanjilu[num][0] sex=zhenduanjilu[num][1] age=zhenduanjilu[num][2] province=zhenduanjilu[num][3] area=zhenduanjilu[num][4] bumen=zhenduanjilu[num][5] ke=zhenduanjilu[num][6] sql = "select keid from hy_keid where ke='%s'" % ke cursor.execute(sql) rows = cursor.fetchall() keid = [] for row in rows: keid.append(row[0]) sql = "select QUESTION from HY_QUESTID where QUID=%d" % keid[0] cursor.execute(sql) rows = cursor.fetchall() question = [] for row in rows: question.append(row[0]) question = question[0].split(",") # print(question) answer = [] for i,j in zip(question,np.arange(len(question))): print("问题"+str(j+1)+":是否"+i+":") print(" A、正常 B、较轻 C、明显 D、非常严重") temp = input("请根据实际情况选择上面的一项:") if(temp=="A"): answer.append(1) elif(temp=="B"): answer.append(2) elif(temp=="C"): answer.append(3) else: answer.append(4) surgery = bumen surgeryChest = ke #one-hot编码 def onehot(labels): n_sample = len(labels) n_class = max(labels) + 1 onehot_labels = np.zeros((n_sample, n_class)) onehot_labels[np.arange(n_sample), labels] = 1 return onehot_labels #获取数据集 def getdata(surgery,surgeryChest): sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from menzhen where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest) cursor.execute(sql) rows = cursor.fetchall() dataset = [] lables = [] for row in rows: temp = [] temp.append(row[0]) temp.append(row[1]) temp.append(row[2]) temp.append(row[3]) temp.append(row[4]) dataset.append(temp) if(row[5]==3): lables.append(0) elif(row[5]==6): lables.append(1) else: lables.append(2) dataset = np.array(dataset) lables = np.array(lables) dataset = dataset.astype(np.float32) labless = onehot(lables) return dataset,labless #获取测试数据集 def gettestdata(surgery,surgeryChest): sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from test where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest) cursor.execute(sql) rows = cursor.fetchall() testdataset = [] testlables = [] for row in rows: temp = [] temp.append(row[0]) temp.append(row[1]) temp.append(row[2]) temp.append(row[3]) temp.append(row[4]) testdataset.append(temp) if(row[5]==3): testlables.append(0) elif(row[5]==6): testlables.append(1) else: testlables.append(2) testdataset = np.array(testdataset) testlables = np.array(testlables) testdataset = testdataset.astype(np.float32) testlabless = onehot(testlables) return testdataset,testlabless dataset,labless = getdata(surgery,surgeryChest) # testdataset,testlables = gettestdata(surgery,surgeryChest) # dataset = dataset[0:100] # labless = labless[0:100] x_data = tf.placeholder("float32", [None, 5]) y_data = tf.placeholder("float32", [None, 3]) weight = tf.Variable(tf.ones([5, 3])) bias = tf.Variable(tf.ones([3])) #使用softmax激活函数 y_model = tf.nn.softmax(tf.matmul(x_data, weight) + bias) #y_model = tf.nn.relu(tf.matmul(x_data, weight) + bias) # loss = tf.reduce_sum(tf.pow((y_model - y_data), 2)) #使用交叉熵作为损失函数 loss = -tf.reduce_sum(y_data*tf.log(y_model)) # train_step = tf.train.GradientDescentOptimizer(1e-4).minimize(loss) #使用AdamOptimizer优化器 # train_step = tf.train.AdamOptimizer(1e-4).minimize(loss) train_step = tf.train.MomentumOptimizer(1e-4,0.9).minimize(loss) #评估模型 correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(y_data, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) # start = time.time() for _ in range(10): for i in range(int(len(dataset)/100)): sess.run(train_step, feed_dict={x_data:dataset[i:i+100,:], y_data:labless[i:i+100,:]}) # print("模型准确率",sess.run(accuracy, feed_dict={x_data:testdataset , y_data:testlables})) # end = time.time() # print("模型训练和测试公耗时:%.2f 秒" % (end-start)) xl_weight = sess.run(weight) useranswer = [[1, 2, 3, 4, 4]]*3 W = np.dot(xl_weight,useranswer) result=0 for i in range(len(W[0])): for j in range(len(W[0,:])): if(i==j): result += W[i][j] result = int(result/5) # print(result) if(result<=3): result = 3 elif(result<=6): result = 6 else: result = 9 sql = "select ILL_NAME from ill_result_tbZ where FAMILY='%s' and ILL_ID=%d" % (ke,result) cursor.execute(sql) rows = cursor.fetchall() ILL_NAME = [] for row in rows: ILL_NAME.append(row[0]) firstResult = ILL_NAME[0] ## print("=======================系统复诊单===================") print("姓名:"+username) print("性别:"+sex) print("年龄:"+str(age)) print("省份:"+province) print("所属区:"+area) print("初诊部门:"+bumen) print("科目:"+ke) ## print("系统智能诊断结果:"+firstResult) if(firstResult[:2]=="疑似"): firstResult = "疑似患病" sql = "select PRESCRIPTION_1,PRESCRIPTION_2,PRESCRIPTION_3,PRESCRIPTION_4,PRESCRIPTION_5,PRESCRIPTION_6,PRESCRIPTION_7,PRESCRIPTION_8,PRESCRIPTION_9,PRESCRIPTION_10,PRESCRIPTION_11,PRESCRIPTION_12,PRESCRIPTION_13,PRESCRIPTION_14,PRESCRIPTION_15 from PRESCRIPTION where SURGERY='%s'and SURGERYCHEST='%s' and ILLNAME='%s'" % (bumen,ke,firstResult) cursor.execute(sql) rows = cursor.fetchall() chufanggrace = [] for row in rows: temp = [] temp.append(row[0]) temp.append(row[1]) temp.append(row[2]) temp.append(row[3]) temp.append(row[4]) temp.append(row[5]) temp.append(row[6]) temp.append(row[7]) temp.append(row[8]) temp.append(row[9]) temp.append(row[10]) temp.append(row[11]) temp.append(row[12]) temp.append(row[13]) temp.append(row[14]) chufanggrace.append(temp) PRESCRIPTION_sum = [] for col in range(np.shape(chufanggrace)[1]): temp = 0 for row in range(np.shape(chufanggrace)[0]): temp += chufanggrace[row][col] PRESCRIPTION_sum.append(temp) b = sorted(enumerate(PRESCRIPTION_sum),key=lambda x:x[1],reverse=True)[:3] index = [] for i in b: index.append(i[0]) sql = "select PRESCRIPTIONINFO,HEALTH from PRESCRIPTIONINFO where DEPARTMENT='%s' and FAMILY='%s' and ILL_NAME='%s'" % (bumen,ke,firstResult) cursor.execute(sql) rows = cursor.fetchall() chufanglist = [] jianyilist = [] for row in rows: chufanglist.append(row[0]) jianyilist.append(row[1]) best_chufang = [] best_jianyi = [] for i in index: best_chufang.append(chufanglist[i]) best_jianyi.append(jianyilist[i]) chufang_str = "" jianyi_str = "" for i,j in zip(best_chufang,range(len(best_chufang))): chufang_str += "系统智能筛选优良处方"+str(j+1)+":" + i +"。" print("系统智能筛选优良处方"+str(j+1)+":" + i) for i,j in zip(best_jianyi,range(len(best_jianyi))): jianyi_str += "系统智能筛选优良养生建议"+str(j+1)+":" + i+"。" print("系统智能筛选优良养生建议"+str(j+1)+":" + i) sql = "select HOSTITALNAME from DOCTORHOSTITALADRREST where PROVINCE='%s' and ADMINISTRATIVE='%s'" % (province,area) cursor.execute(sql) rows = cursor.fetchall() yiyuan = [] for row in rows: yiyuan.append(row[0]) for i in yiyuan: print("系统智能匹配你所在地区附件的医院:"+i) sql = "select ADDRACTION,NAME,SUMMARY from DOCTORS where FAMILY='%s'" % (ke) cursor.execute(sql) rows = cursor.fetchall() yisheng = [] for row in rows: yisheng.append(row[0]) yisheng.append(row[1]) yisheng.append(row[2]) print("系统为你推荐全国相关出色医生所在医院信息:"+yisheng[0]) print("系统为你推荐全国相关出色医生姓名信息:"+yisheng[1]) print("系统为你推荐全国相关出色医生简介信息:"+yisheng[2]) yisheng_str = "" yisheng_str += "医生所在医院:"+yisheng[0] yisheng_str += "医生姓名:"+yisheng[1] yisheng_str += "医生简介:"+yisheng[2] sql = "select CHACKPRO from CHACKPROJECT where FAMILY='%s'" % (ke) cursor.execute(sql) rows = cursor.fetchall() jiancha = [] for row in rows: jiancha.append(row[0]) print("系统建议你到相关正规医院检查以下身体指标:"+jiancha[0]) jianchax = "" jianchax += "系统建议你到相关正规医院检查以下身体指标:"+jiancha[0] sql = "insert into zhenduanjilutable (userid,username,sex,age,province,area,bumen,ke,result,chufang,jianyi,yiyuaan,yisheng,jianchaxiang) values (%d,'%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s')" % (uid,username,sex,age,province,area,bumen,ke,firstResult,chufang_str,jianyi_str,yiyuan[0],yisheng_str,jianchax) cursor.execute(sql) conn.commit() print("此次智能诊断完成,欢迎你下次继续使用:天生自然健康智能医疗系统!") print("特别提醒、注意:该系统的所有诊断只是作为参考,有必需要的用户请到相关正规医院接受相关专家医生完成检查、治疗等流程...") print("系统建议:保持一颗善良、沉稳、宁静和广博的平常心度过每一个清晨和夜晚...") print("祝你们每一位人都开开心心、健健康康、平平安安...阖家安康,如意吉祥......")