import numpy as np

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]    
    return postingList,classVec

def createVocabList(dataSet):
    vocabSet = set([])  
    for document in dataSet:
        vocabSet = vocabSet | set(document) 
    return list(vocabSet)

def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else: 
            print("the word: %s is not in my Vocabulary!" % word)
    return returnVec

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)
    p0Num = np.ones(numWords)
    p1Num = np.ones(numWords)      
    p0Denom = 2.0
    p1Denom = 2.0                        
    for i in range(numTrainDocs):
        if(trainCategory[i] == 1):
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = np.log(p1Num/p1Denom)         
    p0Vect = np.log(p0Num/p0Denom)         
    return p0Vect,p1Vect,pAbusive

def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + np.log(pClass1)    
    p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else: 
        return 0
    
def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if(word in vocabList):
            returnVec[vocabList.index(word)] += 1
    return returnVec

def testingNB():
    listOPosts,listClasses = loadDataSet()
    myVocabList = createVocabList(listOPosts)
    trainMat=[]
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses))
    testEntry = ['love', 'my', 'dalmation']
    thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))
    print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
    testEntry = ['stupid', 'garbage']
    thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))
    print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
    
testingNB()

import re
import numpy as np

def createVocabList(dataSet):
    vocabSet = set([])  
    for document in dataSet:
        vocabSet = vocabSet | set(document) 
    return list(vocabSet)

def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if(word in vocabList):
            returnVec[vocabList.index(word)] += 1
    return returnVec

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)
    p0Num = np.ones(numWords)
    p1Num = np.ones(numWords)      
    p0Denom = 2.0
    p1Denom = 2.0                        
    for i in range(numTrainDocs):
        if(trainCategory[i] == 1):
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = np.log(p1Num/p1Denom)         
    p0Vect = np.log(p0Num/p0Denom)         
    return p0Vect,p1Vect,pAbusive

def textParse(bigString):    
    listOfTokens = re.split(r'\W*', bigString)
    return [tok.lower() for tok in listOfTokens if len(tok) > 2]

def spamTest():
    docList=[]
    classList = []
    fullText =[]
    for i in range(1,26):
        wordList = textParse(open('D:\\LearningResource\\machinelearninginaction\\Ch04\\email\\spam\\%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('D:\\LearningResource\\machinelearninginaction\\Ch04\\email\\ham\\%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList)
    trainingSet = list(np.arange(50))
    testSet=[]           
    for i in range(10):
        randIndex = int(np.random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])  
    trainMat=[]
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V,p1V,pSpam = trainNB0(np.array(trainMat),np.array(trainClasses))
    errorCount = 0
    for docIndex in testSet:       
        wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
        if(classifyNB(np.array(wordVector),p0V,p1V,pSpam) != classList[docIndex]):
            errorCount += 1
            print("classification error",docList[docIndex])
    print('the error rate is: ',float(errorCount)/len(testSet))
    
spamTest()